PMX Specification
— DRAFT —

Atsushi HORI

May, 2008

Contents

1 Overview 1
1.1 Changes o i e e 1
1.2 Terminology e 2
1.3 Compatibility with PMv2 2
1.4 PM Features e 2
1.5 Common Rules 2
1.6 Composite Context and Member Context 3

1.6.1 Common Fetures 4
1.7 State Transition 4
1.8 Buffer Descriptor 4
1.9 Gang Scheduling and Checkpointing, 6
1.10 Error Reporting Lo 7

2 Composite Context 8

2.1 Composite Context Creation 8
2.1.1 pmxOpenContext() it 8
2.1.2 pmxAddMember() 8
2.1.3 pmxCompositeGetConfig() 9
2.1.4 pmxCompositeAddRoute() 9
2.2 Control Port 10
2.3 Composite Context Operations 10
2.3.1 pmxGetMtu() 10
2.3.2 pmxGetAttribute() 10
233 pmxReset() 10
2.3.4 pmxInitialize() and pmxStart() 11
235 pmxStop() 11
2.3.6 pmxBreak() and pmxWaive() 12
2.3.7 pmxContinue() 12
2.3.8 pmxClose() 12
2.3.9 pmxNotCommunicating() 12
2.4 Two-Sided Communication L L 13
2.4.1 pmxGetSendBuffer() 13
2.4.2 pmxGetSendDescInfo() 14
2.4.3 pmxTruncateBuffer() 14
244 pmxKeepSendDesc() 14
245 pmxSend() 15
2.4.6 pmxReleaseSendDesc() 15
24.7 pmxIsSendDone() 16
2.4.8 Order of Sending Messages L. 16

249 pmxReceive() 16

2.4.10 pmxReleaseReceiveBuffer() 17
2.4.11 pmxBeforeSelect() 17
2.4.12 pmxAfterSelect()o 18
2.4.13 Order of Received Messages o 18
2.4.14 Blocking Receive Example oo oL 18
2.5 One-Sided Communication L 19
2.5.1 pmxExport() e 21
2.5.2 pmxUnexport() e 22
2.5.3 pmxRead() 22
254 pmxWrite() 23
2.5.5 pmxIsReadDone() i 23
2.5.6 pmxIsWriteDone() 23
2.6 Checkpoint Support 24
2.6.1 pmxSave() 24
2.6.2 pmxReopen() 25
2.7 Network Preemption Support 25
2.7.1 pmxBreak() 26
2.7.2 pmxWaive() 26
2.7.3 pmxContinue() 26
2.8 Debug 26
Member Context 28
3.1 SCore KVS 28
3.1.1 Environment Query e 28
3.1.2 Imitilization 28
3.1.3 Scoreboard Information oL 29
314 KVS . o 29
3.1.5 Scoreboard Databasae Access L. 30
3.2 Member Context L 30
3.3 Template 30
3.3.1 pmmOpenArgs() L e 30
3.3.2 pmmReset() 32
3.3.3 pmmInitialize() and pmmStart(), 32
3.3.4 pmmStop() 32
3.3.50 pmmBreak() and pmmWaive() 33
3.3.6 pmmContinue() 33
3.3.7 pmmClose() e 33
3.3.8 pmmNotCommunicating() 34
3.3.9 pmmGetSendBuffer() 34
3.3.10 pmmGetSendDescInfo() 35
3.3.11 pmmTruncateBuffer() 35
3.3.12 pmmKeepSendDesc() Lo 36
3.3.13 pmmSend () 36
3.3.14 pmmReleaseSendDesc() 36
3.3.15 pmmIsSendDone() 37
3.3.16 pmmReceive() L 37
3.3.17 pmmReleaseReceiveBuffer(), 37
3.3.18 pmmBeforeSelect() 38
3.3.19 pmmAfterSelect() 39

ii

3.3.20
3.3.21
3.3.22
3.3.23
3.3.24
3.3.25
3.3.26
3.3.27
3.3.28
3.3.29
3.3.30

pmmExport ()
pmmUnexport()
pmmRead ()
pmmWrite()o
pmmIsReadDone()
pmmIsWriteDone() L L Lo
pmmSave ()
pmmReopen()
pmmBreak()
pmmWaive()
pmmContinue()

4 Common Routines

4.1 PM Node Set e
4.2 Machine Dependent Operations
4.3 Spin Lock and Aotmic Op.
4.4 Network Byte Order
4.5 File Descriptors oL e
4.6 Hostname e e e e e
4.7 Pthread L
4.8 Temporary Files o
4.9 Stack Variables
4.10 Debug Support e
411 MISC. . . . o o e
5 How PMXfunctions are called in real world
5.1 Inmitializing PM for SCore-D Lo
5.2 Initializing PM for User Processes
5.3 Normal Termination of User Processes
5.4 Network Preemption o
5.5 Checkpoint

5.6 Restart

6 Development, Test and Tuning

6.1 Test Programs
6.1.1 Functional Test e
6.1.2 Performance Test

iii

43
43
43
43
43
44
44
44
44
45
45
45

47
47
47
47
47
48
48

List of Figures

1.1
1.2
1.3
1.4
1.5

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

Basic Idea of PM/Composite 3
Example of Composite PM Contexts 3
State Transition of a PM context 4
Pthread and Control Port 5
State Transition of Send Descriptor 6
pmNode Definition o Lo 8
pmSendDescInfo Definition oo oo 14
Order of Sending Messages o 16
Order of Received Messages o o 18
blocking receive() 19
Counting Outstanding Messages oL 20
One-Sided Communication L e 21
pmDeviceOps Definition inpm.h Lo 21
Example of SCore database description. 29
scoreboard get_value() functionusage 29
Member Context Definition L. 30
Code Template of pmmOpenMember () 31
pmSendDescInfo Definition Lo 0oL o oL 35
PM Node Set 43
PM Machine Dependent Functions 43
PM Spin-Lock and Aotmic Op. 44
Network Byte-Ordering Functions 44
File Descriptor Related Functions L. 44
pmx_gethostname() 45
pmx_fork pthread() 45
Macros for debuggingo 46

v

List of Tables

1.1

2.1
2.2
2.3
24
2.5
2.6

4.1

5.1
5.2
5.3
5.4
9.5
5.6

Progress vi
Lifetime of Buffer Descriptor 5
pmxInitialize() Option Bits 11
PM One-Sided Communication Operations 20
Problematic One-Sided Communication 22
PM Checkpoint Operations 24
PM Preemption Operations 25
PM Debug Supportso 26
Value of the PM_DEBUG environment variable 45
Calling Sequence at SCore-D Initialization 47
Calling Sequence for Initializing User contexts 48
Calling Sequence for Initializing User contexts 48
Calling Sequence for Gang Scheduling 49
Calling Sequence for Checkpoint 49
Calling Sequence for Restart, 49

PROGRESS

Table 1: Progress

y Function | Composite | Ethernet | MX [Infiniband | Ethernet-HXB
OpenArgs - done not yet not yet
OpenMember - done done done
Reset done done done | not yet (7)
Initialize done done done done
Start done done done done
Stop done done done done
Close done done done done
GetSendBuffer done done done done
GetSendDescInfo done done done done
TruncateBuffer done done done done
KeepSendDesc done done done done
Send done done done done
ReleaseSendDesc done done done done
IsSendDone done done done done
Receive done done done done
ReleaseReceiveBuffer done done done done
BeforeSelect done done not yet not yet
AfterSelect done done not yet not yet
Break done not yet | not yet not yet
Waive done not yet | not yet not yet
Continue done not yet | not yet not yet
NotCommunicating done done done not yet
Export not yet not yet | not yet not yet
Unexport not yet not yet | not yet not yet
Write not yet not yet | not yet not yet
IsWriteDone not yet not yet | not yet not yet
Read not yet not yet | not yet not yet
IsReadDone not yet not yet | not yet not yet
Save done not yet | not yet not yet
ReopenMember done not yet | not yet not yet

Dump H done done done not yet

vi

Preface

SCore (pronounced as [es-core]) was designed to be an operating system for clusters for high per-
formance computation from the beginning. Thus SCore software philosophy and architecture are
unique and very different from the other cluster management software or parallel programming
environment for clusters.

vii

Chapter 1

Overview

PMv2 was designed with a mind in which every software layer can be developed for PMv2 so
that the hardware performance can be excluded as much as possible. Nowadays, however, it is
getting difficult to develop everything from a scratch.

In PMv2, SCore-D used to manage cluster resources which are hosts, processors and network.
To enable this, PM contexts are shared with SCore-D and user processes. However, this context
sharing was the headache to implment PM on top of existing communication library, such as
Myricom MX and the Verb layer of Infiniband. So the context sharing is NOT required to
implment PM library in PMX.

This does not imply that SCore with PMX will have less functionalities, such as gang-
scjeduling and checkpoint/restart of the ones with PMv2. And this is the most challenge of
designing PMX.

Third Party Communication Layer In PMv2, everything is developed by SCore develop-
ment team. However, it is getting difficult to develop everything. So PMX is designed to
utilize those third party communication layer.

Multi Core Since the multi-core cluster (used to be called SMP cluster) is getting popular
nowadays. In PMv2, the multi-core was in their minds but they did not expect to have
more than 4 cores in a host. Although there is some argument to the number of cores in
a host, but power problem of silicon is strongly pushing the multi-core technology.

MPI2 Dynamic process creation problem.

Here in this document, PMX, a new API design for PMv2, is proposed so that the above
two major problems are to be solved.

1.1 Changes

e PMX functions are prefixed by “pmx” instead of “pm” in PMv2.

e Function-level compatibility (user only) is preserved

Defining PM basic types

The size of PM context can be dynamic.

Remove the privilege abstraction and operations

Changing the sharing semantics between user process and SCore-Dprocess

Merging migration functions with checkpoint functions

Making global clock functions obsolete

e Remove pmGetFd () function

PM/Composite is a specil PM device in PMX.

1.2 Terminology

Context

A PM context is an end-point derived from a PM device. A PM context is an end-point.
The PM contexts which are bound with the same key number can communicate with the
others. The order of messages sent from a PM context to another PM context must be
preserved at the PM context receiving.

Key
A PM key is a binding of PM contexts. A PM context can only communicate with the
other PM contexts bound with the same PM key value.

Composite Context and Member Context

Composite is a special PM device which is not an actual network device but a pseudo
device having routing table. In PMX, PM/Composite is merged with PM/Shmem which
is a shared memory device for intra-host (inter-process) communication. Member context
is the context which is designed to be a member of the Composite context. User program
must always allocate at least one PM/Composite context and actual communication is
done by member context hold by the PM/Composite context.

1.3 Compatibility with PMv2

1.4 PM Features

e PMX is an API supporting multiple protocols (multiple network devices). The multiple
protocol support is done by PM/Composite, a pseudo PM device, and actual PM device
need not to take care about the multiple protocol handling.

e PMX supports gang scheduling, checkpoint/restart and migration.
e A PM device can be implemented as user-level or kernel-level communication.

e PMX supports heterogeneous processors (byte orders)

1.5 Common Rules

No Blocking Any PMX function must not block.

1.6 Composite Context and Member Context

There is a special PM device, called PM/Composite. In PMv2, PM/Composite is essentially
a routing table indexed by destination node number. In PMX, PM/Composite has the same
routing table, however, it is merged with PM/Shmem. It is assumed that PM/Composite is the
PM device which is seen by user programs directly, it has some common features to all other
PM devices, such as the compatibility functions with PMv2 and locking for multi-threaded
programming. This will be explained in Subsection 1.6.1.

When to try to send a message, PM/Composite finds an table entry corresponding to the
destination node, and the entry holds actual PM device and the sending request is forwarded
to the PM device in the entry (Figure 1.1). When to receive a message, PM/Composite try to
find a received message among the PM devices registered to PM/Composite device.

PM/Composite Routing Cluster Network

Table at Node #0
Node #0 n/a CPU#0 L
Node #1 | PM/Shmem cpus|HoSt #0
Node #2 | PM/Myrinet [CPU#0
Node #3 | PM/Myrinet cpus |Host #1 .
Node #4 | PM/Myrinet CPU#0 Myrinet
Node #5 | PM/Myrinet crusr | oSt #2
Node #6 | PM/Myrinet [CPU#0
Node #7 PM/Myrinet CPU#1 Host #3
Node #8 | PM/Ethernet CPU#0 Ethernet
Node #9 | PM/Ethernet cpus |Host #4
Node #10| PM/Ethernet CPU#0
Node #11 | PM/Ethernet Cru#t|HOSE#5
Node #12| PM/Ethernet CPU#0 \
Node #13| PM/Ethernet crus oSt #6
Node #14 | PM/Ethernet CPU#0
Node #15 | PM/Ethernet crus | oSt #7

Figure 1.1: Basic Idea of PM/Composite

//3/; NV \/\35
Il |

Inter-Host #1

ALTT T4 |

Inter-Host #0

PM/Composite

PM/Composite

Process #1 Process #2

Host #0 Host #1

N

Process #0 Process #3 Y,

A

y

Legend: TSend Only : Send/Recv

Figure 1.2: Example of Composite PM Contexts

1.6.1 Common Fetures

PM/Composite in PMX has common featrues to the other PM devices so that the other PM
device does not have to care about.

Argument Check The passed arguments to the PMXfunctions are checked as far as PM/Composite
can do.

State Transition PM context has a state and the transition of the state must be obeyed
by the rule described in Section 1.7. Everytime a program wants to change the state
of PM/Composite context and its member contexts, PM/Composite checks if the state
transition is legal or not. Thus the other PM contexts do not have to check it.

Compatibility with PMv2 PM/Composite supports PMv2 functions, pmGetMtu(), pmGetSelf (),
pmGetSendBuffer (), pmTruncatreBuffer (), pmSend (), pmReceive () and pmReleaseReceiveBuffer ()

functions for compatibility.

1.7 State Transition

Gang Cycle

Save()
Restore() Open() @
Initialize() p
Waive()
Ciose) Reset Ready Break()
A Suspended
Continue()
Reset() | | Restore() /
Initialize() Start() /
Save() Stop() Stopped
Restore() Comm. Ops
\ Initialize()
A
Started Start()
Close() Stopped Stop() Checkpoint Ready
Cycle

Figure 1.3: State Transition of a PM context

1.8 Buffer Descriptor

The buffer descriptor is newly introduced feature of PMX, so that the lock granularity can be
minimized and PM NFO (Network Fail Over) device can be implemented safely.

The descriptor is created and retuned a descriptor by calling the pmxGetSendBuffer(),
pmxReceive (), pmxRead () and pmxWrite() functions. Further, it allows to check if sending or

-

User Process

Composite Context

Trm

pmMxXXXX()

Compute
Thread

Control Thread

\nXXXX()

Member
Context

Unix Socket

receiving is succeeded. This message level status check is needed to implement NFO (Network
Fail Over), where messages which are failed to send must be re-send by using the other PM

Figure 1.4: Pthread and Control Port

context(s) from the different process possibly.

When communicating processes are checkpointed and restarted, calling the pmReopen () func-

SCore-D Process

Process Cycle
pmclnitialize()
pmcStart()
pmcStop()

Gang Cycle

pmcBreak()

pmcWaive()
pmcContinue()
pmcNotCommunicating()

Checkpoint Cycle
pmcStop()
pmclnitialize()
pmcStart()

tion guarantees to have the same descriptor for the outstanding messages.

This uniqueness of the descriptor must be guaranteed with the descriptors which are created
by calling the same PMX function. For example, the descriptor created by the pmxGetSendBuffer ()
function may happen to return the same descriptor created by calling the pmxReceive () func-

tion, but they are strictly distinguished in the program.

Table 1.1: Lifetime of Buffer Descriptor

’ H Creation ‘ Destruction ‘ Note
Two-Sided Receive || pmxReceive () pmxReleaseReceiveBuffer ()
Two-Sided Send pmxGetSendBuffer() | pmxSend()
Two-Sided Send pmxGetSendBuffer() | pmxReleaseSendDesc () when pmxKeepSendDesc () is ¢
One-sided Read pmxRead () pmxIsReadDone ()
One-sided Write pmxWrite () pmxIsWriteDone ()

Implementation Note on Buffer Descriptor

The least-significant PMX DESC_SHIFT bits of the descriptor value are reserved for
PM/Composite.

GetSendBuffer()
TrunncateBuffer()

Keep()

GetDesclInfo()

A

Sending

GetDesclnfo()

G

ReleaseSendDesc()

p3
Q
S

Figure 1.5: State Transition of Send Descriptor

1.9 Gang Scheduling and Checkpointing

The pmxBreak(), pmxWaive() and pmxContinue() operations must be designed so that the
operation can affect all the send and receive threads. This is because of that those operation
functions are called by SCore-D targetting the PM contexts allocated for user process(es).

The function call cycle of pmxBreak (), pmxWaive () and pmxContinue() for gang scheduling
must be transparent to target user process(es). Conversely speaking, those function can be
called in the middle of communication in the user process. Lost of messages or receiving the
same message twice or more should not happen, during the preemption cycle.

The same rule must be applied to the checkpoint and restart. When a checkpoint is to be
taken, the function call cycle of pmxStop (), pmxSave (), pmxInitialize (), and pmxStart () will
take place. When restarting the checkpointed process, the function call sequence of pmxReopen (),
pmxInitialize() and pmxStart () will take place. Unlike the above gang scheduling case, those
functions are called in the user processes.

If the implementation of those operations is impossible due to the limitation of underlying
communication library, then those operation should not be implemented.

1.10 Error Reporting

All PMX functions return an integer error value and return PM_SUCCESS when they succeed.

PM communication is asynchrounous and there is no error reporting variable. When an
error happens on any asynchrounous communication operation, one-sided and two-sided, the
error can be reported as the return value of any PM functions, whenever the implementation
detects the error on the same shared context. Thus, for example, the pmxSend () function may
report an error which is caused by the previous pmxSend () function call.

In the case where multiple errors happen before the chance to report the error. In this case,
it is up to the implementation to report which error.

Implementation Note on Error Reporting

When a communication error happens, there is no way to recover nor proceed the parallel
execution in most cases. And somtimes it is very difficult to specify which function call
caused the error. Thus this “lazy” error reporting will not cause any problem and can
reduce the overhead caused by “strict” error reporting.

Chapter 2

Composite Context

2.1 Composite Context Creation

2.1.1 pmxOpenContext ()

int pmxOpen(pm_key_t key, pm_flags_t flags, pmNode nodes[],
pm_node_t nnodes, pm_node_t nodeno,
pmContext *pmcp, int *fdp)

The pmxOpen() function creates a PM/Composite context.

When the fdp argument is set to NULL, then the pmxOpen () function will not create a pthread
to control the created context by a supervisor process (SCore-D). Otherwise a Unix socket and
a pthread are created, and the socket is to be passed to the supervisor process to control
the context ouside of the process calling the pmxOpen() function. As the result of having the
control port, the pmxInitialize(), pmxStart (), PFUNCpmxStop, pmxBreak(), pmxWaive ()
and pmxContinue() functions are unable to be called from the process calling this function so
that the context is to be controlled by the supervisor process (see also 2.2).

Return Values
PM_SUCCESS Succeeded

EINVAL Illegal arguments
EIO Internal error
others The mmap () function may return with.

typedef struct pm_node {

char *hostname;
pm_node_t procno;
} pmNode;

Figure 2.1: pmNode Definition

2.1.2 pmxAddMember ()

int pmxAddMember(pmContext *pmc, int argc, char **argv, pmNode nodes[]);

The pmxAddMember () function creates a member context and add the created member context
to the composite context specified with the pmc argument. The member context is created by
calling the pmmOpenMember () member function and the created member context is returned to
the pmp argument and registered to the composite context.

Return Values
PM_SUCCESS Succeeded

EINVAL Illegal arguments

ERANGE Node number in the tab is out of range
EBADF File descriptor in bad state

EIO Internal error

others The mmap () function may return with.

2.1.3 pmxCompositeGetConfig()

int pmxCompositeGetConfig(pmCompositeContext *pcc,
pm_key_t *keyp,
pm_flags_t *flagsp,
pm_node_t *nnodesp,
pm_node_t *nprocsp,
pm_node_t *procnop)

Return Values
PM_SUCCESS Succeeded

2.1.4 pmxCompositeAddRoute ()

int pmxCompositeAddRoute(pmCompositeContext *pcc,
pm_node_t ndc,
pm_node_t ndm,
pmMemberContext *pmm,
pm_size_t tsmtu,
pm_size_t osmtu)

Return Values

PM_SUCCESS Succeeded
ERANGE Succeeded
EBUSY Succeeded

2.2 Control Port

int pmcInitialize(int £d);
int pmcStart(int f£d);

int pmcStop(int £d);

int pmcClose(int fd);

int pmcBreak(int fd);

int pmcWaive(int fd);

int pmcContinue(int fd);

2.3 Composite Context Operations

2.3.1 pmxGetMtu()

int pmxGetMtu(pmContext *pmc, pm_node_t node, pm_size_t *mtu_twoside,
pm_size_t *mtu_oneside);

The pmxGetMtu() function returns the upper limit of the send messages size. The node can
be PM_NODE_ANY and returns the same number as the mtu_twoside member variable in the
pmAttribute structure obtained by the pmxGetAttribute() function.

The mtu_twoside and/or the mtu_oneside variable can be set to NULL.

Return Values

PM_SUCCESS Succeeded
EINVAL Illegal arguments
EIO Internal error

2.3.2 pmxGetAttribute()

The pmxGetAttribute () returns the attributes of the specified PM context.

int pmxGetAttribute(pmContext *pmc, pmtAttribute *attrp);

Return Values
PM_SUCCESS Succeeded
EIO Internal error

2.3.3 pmxReset()

int pmxReset(pmContext *pmc) ;

10

Reset the PM context. If there are some messages in the receive and/or send buffer, those
messages will be lost.

Return Values
PM_SUCCESS Succeeded
EIO Internal error

2.3.4 pmxInitialize() and pmxStart()

int pmxInitialize(pmContext *pmc, pm_flags_t flag);
int pmxStart(pmContext *pmc);

The pmxInitialize () and pmxStart () functions creates and starts the receive and send threads.
Those two function must be called in a process in which actual PM communication takes place.
If a contex is shared between processes to communicate, eash process must call those functions.

The end of calling the pmxInitialize () must be barrier-synchronized. The nodes specified
in the pmxOpenContext() MAY not call those functions at the start up. This is because the
node is allocated but there is no process at the time, but the process MAY be invoked in the
future.

Table 2.1: pmxInitialize() Option Bits

Symbol Note
PM_OPT_BLOCKING_RECV | Enabling blocking receive
PM_OPT_NO_RECV Disbaling receiving

Return Values
PM_SUCCESS Succeeded

EBUSY Device already opened
EPROTO Illegal state transition
ENOLINK Device has no link
EHOSTUNREACH there is an unreachable node
EIO Internal error

2.3.5 pmxStop()

int pmxStop(pmContext *pmc);

Stop and destroy receive and send threads corresponding to the calling process. Those threads
can be restarted or recreated by calling the pmxInitialize() and pmxStart () functions.

Return Values
PM_SUCCESS Succeeded

EBUSY Device already opened

EPROTO Illegal state transition

EAGAIN There is at least one thread communicating
EIO Internal error

11

2.3.6 pmxBreak() and pmxWaive()

int pmxBreak(pmContext pmc) ;
int pmxWaive(pmContext pmc);

Stop receive and send threads for network preemption (gang scheduling). The end of calling the
pmxBreak () must be barrier-synchronized.

Return Values
PM_SUCCESS Succeeded

EBUSY Device already opened

EPROTO Illegal state transition

EAGAIN There is at least one thread communicating
EIO Internal error

2.3.7 pmxContinue()

int pmxContinue(pmContext pmc) ;

Resume the suspended receive and send threads which are suspended by calling the pmxBreak ()
and pmxWaive () functions.

Return Values
PM_SUCCESS Succeeded

EBUSY Device already opened
EPROTO Illegal state transition
EIO Internal error

2.3.8 pmxClose()

int pmxClose(pmContext *pmc) ;

The pmxClose () function closes the PM context which was created by calling the pmxOpenContext ().
After returning this function, the specified PM context will be invalid to access.

Return Values
PM_SUCCESS Succeeded

EBUSY Device already opened
EPROTO Illegal state transition
EIO Internal error

2.3.9 pmxNotCommunicating()

The pmxNotCommunicating() function returns PM_SUCCESS if there is no outstanding two-sided
and one-sided communication. Otherwise it returns EBUSY.

int pmxNotCommunicating(pmContext *pmc) ;

12

The pmxNotCommunicating() function must be designed and implmented so that the func-
tion can be called on the PM context which is not called the pmxInitialize() and the
pmxStart () functions, but those functions are already called by the process which is differ-
ent from the process calling the pmxNotCommunicating() function.

Return Values
PM_SUCCESS Succeeded
EBUSY There are some outstanding communications

2.4 Two-Sided Communication

Sending a Message

2.4.1 pmxGetSendBuffer()

To send a message, the pmxGetSendBuffer () function is called to allocate a send buffer.

int pmxGetSendBuffer(pmContext *pmc, pm_node_t node, void *x*bufp,
pm_size_t length, pm_desc_t *descp);

It returns the address of the allocated buffer and the send buffer descriptor. The pmxGetSendBuffer ()
function can be called by different processes or threads on the same shared PM context.

The returned buffer address is aligned to machine dependent address so that the buffer can
be casted to any data type.

The send buffer information can be obtained by calling the pmxGetSendDescInfo () function
on the send buffer descriptor returned by the pmxGetSendBuffer () function.

It is not allowed to send a message to the node itself, nor to send a message having zero
length.

If the PM device of the context is Inter-Host routing, then the context may be shared between
processes in a host. Therefor the pmxGetSendbuffer () should have a lock during its execution.
And when the context is already locked, the pmxGetSendBuffer () returns EBUSY.

Return Values
PM_SUCCESS Succeeded

ENOBUFS No buffer space available

EBUSY Already locked

EINVAL Illegal arguments

EPROTO Illegal state transition

EMSGSIZE Message too long or zero message size
ERANGE Illegal node number

EIO Internal error

13

/*

* PM Descriptor Info.

*/
typedef struct pm_send_desc_info {
int status; /* status */
pn_addr_t addr; /* buffer address */
pm_size_t length; /* message length */

} pmSendDescInfo;

Figure 2.2: pmSendDescInfo Definition

2.4.2 pmxGetSendDescInfo()

int pmxGetSendDescInfo(pmContext *pmc, pm_desc_t desc,
pmSendDescInfo *infop);

And the pmSendDescInfo structure is defined as above. If the corresponding message is already
sent or not found in the PM context, then the pmxGetSendDescInfo() function returns EBADR.

Return Values

PM_SUCCESS Succeeded

EBADR No such descriptor
EIO Internal error

2.4.3 pmxTruncateBuffer()

int pmxTruncateBuffer(pmContext *pmc, pm_desc_t desc,
pm_size_t length);

The pmxTruncateBuffer () function can shrinks the send buffer length to the specified length.
The pmxTruncateBuffer() function can be called any number of times in the execution be-
tween the call of the pmxGetSendBuffer () function and the call of the pmxSend () function, and
shrinked buffer can be expanded up to the length which is specified by the pmxGetSendBuffer ()
function. Setting the length of zero results in returning an error (EINVAL).

Return Values
PM_SUCCESS Succeeded

EINVAL Illegal arguments
EBUSY Already locked
EPROTO Illegal state transition
EIO Internal error

2.4.4 pmxKeepSendDesc()

int pmxKeepSendDesc(pmContext *pmc, pm_desc_t desc);

14

The pmxReleaseSendDesc () function destroys the send descriptor which is kept by calling the
pmSend () function.

If the pmxKeepSendDesc() function is called, then the buffer descriptor is kept and the
corresponding buffer region must not be reclaimed, until the descriptor is released with calling
the pmxReleaseSendDesc () functoion.

Return Values

PM_SUCCESS Succeeded

EBADR No such descriptor
EIO Internal error

2.4.5 pmxSend()

Once the content of the send message is fixed, then the pmxSend () function is called to send the
message. After calling the pmxSend () function, the modification on the content of the allocated
send buffer may not be refelected to the received message.

int pmxSend(pmContext *pmc, pm_desc_t desc);

If the PM device of the context is Inter-Host routing, then the context may be shared between
processes in a host. In some implementation, a lock during the pmxSend() execution may be
required. And when the context is already locked, the pmxSend () returns EBUSY.

Return Values
PM_SUCCESS Succeeded

EBADR No such descriptor
EBUSY Already locked
EPROTO Illegal state transition
EIO Internal error

2.4.6 pmxReleaseSendDesc()

int pmxReleaseSendDesc(pmContext *pmc, pm_desc_t desc);

The pmxReleaseSendDesc() function destroys the send descriptor which is kept by calling the
pmSend () function.

Return Values
PM_SUCCESS Succeeded

EBADR No such descriptor
EBUSY Already locked
EPROTO Illegal state transition
EIO Internal error

15

2.4.7 pmxIsSendDone ()

int pmxIsSendDone(pmContext *pmc);

Return Values
PM_SUCCESS Succeeded
EBUSY Not yet

EIO Internal error

2.4.8 Order of Sending Messages

In the program shown in Figure 2.3, the messages will be sent in the order of message A, B and
C. This order is the same order of calling the pmxGetSendBuffer () function.

pmxGetSendBuffer(pmc, dest, &mess_a, &desc_a);
pmxGetSendBuffer(pmc, dest, &mess_b, &desc_b);
pmxGetSendBuffer(pmc, dest, &mess_c, &desc_c);

bﬁiSend(pmc, &desc_b, 1);
pmxSend(pmc, &desc_c, 1);
pmxSend(pmc, &desc_a, 1);

Figure 2.3: Order of Sending Messages

Receiving a Message

2.4.9 pmxReceive()

The pmxReceive () function tries to get a received message.

int pmxReceive(pmContext *pmc, void **bufp, pm_size_t *sizep,
pm_desc_t *descp);

The pmxReceive() function returns the address of the received message and the receive
buffer descriptor, if there is a received message.

The returned buffer address is aligned to machine dependent address so that the buffer can
be casted to any data type.

Return Values
PM_SUCCESS Succeeded

EINVAL Illegal arguments

EBUSY Already locked

EPROTO Illegal state transition

ENOBUFS No message to receive available
ESHUTDOWN Receiving is disabled

EIO Internal error

16

2.4.10 pmxReleaseReceiveBuffer()

int pmxReleaseReceiveBuffer(pmContext *pmc, pm_desc_t desc);

The descriptor is released and corresponding buffer region is reclaimed when the pmxReleaseReceiveBuffer ()
is called. There is no way and no need of getting information from the receive buffer descriptor.

Return Values
PM_SUCCESS Succeeded

EBUSY Already locked
EPROTO Illegal state transition
EBADR No such descriptor
EIO Internal error

Blocking Receive

2.4.11 pmxBeforeSelect()

int pmxBeforeSelect(pmContext *pmc, fd_set *fds, int *maxfdp,
sigset_t *sigmask);

The pmxBeforeSelect () function tells PM context that user program is going to block to wait
for incoming messages. It returns the file descriptor(s) in £ds, the maximum number of the file
descriptor, and the signal mask of Linux so that those variables can be passed to the pselect ()
function. There can be the case where user sets those variables and the pmxBeforeSelect ()
function never resets them.

The pmxBeforeSelect () function is designed so that the wait can be implemented with using
the Linux pselect () function. The fds and the maxfdp variables are set by the pmxBeforeSelect ()
function so that they can be passed to the Linux pselect() function. It should be noticed
that the pmxBeforeSelect () function does not always return with the file descriptor(s) to be
pselect Oed. In this case, the maxfdp will be returned unchanged and the fds and fdmaxp may
not be suitable for passing the pselect () function.

Also the sigmask can be passed so that some specific signal(s) can unblock pselect()
function. To avoid the race condition, if a Linux signal is used to unblock the waiting, then
the signal must be blocked in the pmxBeforeSelect () function, and can be unblocked in the
pmxAfterSelect () function.

The pmxBeforeSelect() and the pmxAfterSelect() functions must be called in pair al-
ways. Since it may be very difficult to avoid the race condition in some implementations, the
pmxReceive () function must be called before calling the pselect () function so that the mes-
sages received in prior to the call of the pmxBeforeSelect () function are extracted from the
receive buffer. The pmxBeforeSelect () function call never guarantees the presence of received
message(s) when the pselect () function returns with a positive integer larger than zero. User
program must be programmed to handle the case where the pselect() function tells there
seems to be some received messages, but actually there is no received messages. In addition,
the pselect () may be blocked even if there are some messages which can be be received. Thus
it is not recommended to set the infinite or very larger timeout duration (by setting NULLof the
timeout parameter).

The returned set of the file descriptors MAY be changed while the execution of a parallel
process, especially when the parallel process spawns (adds) the other processes or some processes

17

in the parallel process terminates. Thus the set of file descriptors must be obtained by the
function every time pselect() is called.

Return Values
PM_SUCCESS Succeeded

EBUSY Already locked
EPROTO Illegal state transition
EIO Internal error

2.4.12 pmxAfterSelect()

int pmxAfterSelect(pmContext *pmc);

Return Values
PM_SUCCESS Succeeded

EBUSY Already locked
EPROTO Illegal state transition
EIO Internal error

2.4.13 Order of Received Messages

In the program shown in Figure 2.4, the messages will be sent in the order of message A, B and
C. This order is the same order of calling the pmxReceive().

pmxReceive(pmc, &mess_a, &size_a, &desc_a);
pmxReceive(pmc, &mess_b, &size_b, &desc_b);
pmxReceive(pmc, &mess_c, &size_c, &desc_c);

ﬁﬁiReleaseReceiveBuffer(pmc, desc_b);
pmxReleaseReceiveBuffer(pmc, desc_c);
pmxReleaseReceiveBuffer(pmc, desc_a);

Figure 2.4: Order of Received Messages

2.4.14 Blocking Receive Example
Deadlock Detection

In the SCore-D deadlock detection, checking the existence of outstanding messages which are
in the buffers of a PM context and are not yet received by a user process nor sent to the other
process, is the key. Figure 2.6 shows the possible problem on counting the outstanding messages.
On the node K SCore-D samples a PM context but it can not found message in the receive
buffer, and on the node L SCore-D can not find any message in the send buffer, however, a
message actually exists. This can not happen on PMv2 because any actual message sending is
prohibited at the time of sampling.

This problem can be avoided by doing the check twice. When the first check fails to find
some outstanding messages, then do the check again. If the both checks tell the absence of the
outstanding message, then there is possibility of deadlock.

18

#include <sys/select.h>
#include <signal.h>
#include <errno.h>
#include <pm.h>

int blocking_receive(pmContext *pmc, void **bufp, pm_size_t *lenp,
pm_desc_t *descp) {
struct timespec timeout;
sigset_t sigmask;
fd_set fds;
int fd_max;
int ccO, ccil;

FD_ZERO(&fds);

fd_max = 0; // must be set to zero everytime this function is called

if (sigprocmask(0, NULL, &sigmask) < O g { // get current signal mask
return(errno);

ccO = pmxBeforeSelect(pmc, &fds, &fd_max, &sigmask);
if(ccO !'= PM_SUCCESS) return(ccO);

while(1) {
// Race: an interrupt or a signal may be delivered here.
// When it happens, pselect(g returns immediately
// but the coresponding message is already pmxReceive()d.

if((ccl = pmxReceive(pmc, bufp, lenp, descp)) == PM_SUCCESS) break;
if(ccl == EBUSY) continue;

if(ccl '= ENOBUFS) return(ccl); // Error !!

// The return value of pselect() may NOT be accurate

// because of the race condition above.

if(fd_max == 0) break;

timeout.tv_sec = 0;

timeout.tv_nsec = 10 * 1000 * 1000; // 10 msec

(void) pselect(fd_max, &fds, NULL, NULL, &timeout, &sigmask);

}
if((ccO = pmxAfterSelect(pmc)) != PM_SUCCESS) return(ccO);
return(ccl g;

Figure 2.5: blocking receive()

2.5 One-Sided Communication

In PMX, there is no implicit rule on the order of inidividual one-sided communications. There
is no rule on the order of two-sided communications and one-sided communications.

Figure 2.7 shows the normal one-sided communication scheme. Most of one-sided communi-
cation requires the pindown of a memory segment so that the physical memory address of the
segment would not be changed. It is implementation-dependent that how the memory segment
is locked and how the locked segment is expressed in its API. Since PMX is supporting multiple
protocols (multiple underlying communication libraries), the low-level implementation should
be hide fromthe PMX API.

The pmxExport() function locks the specified memory segment by calling an appropriate
function of low-level library, and the segment ID is sent to the node on which the segment 1D
will be used for some one-sided communication. The pmxExport () function returns a handle of
the segment. This handle can be used for the one-sided communication of PMX. The message
to send the low-levl segment ID is hidden from user program (dashed arrrow in Figure 2.7,
however, pmxReceive () function should be called to receive the hanlde so that the low-level can
handle the segment ID properly (Figure 2.7).

A created memory handle can be exported to the other nodes any time. It is not allowed

19

Node K Node L
breakContext ——
SIGSTOP —— Sen — breakContext
Sample K1——
—4—SIGSTOP
Ack
End of First Sampling —[Sample L
Begin of Second Sampling

Sample Kp 34—

1 | 5 Sample L2

Figure 2.6: Counting Outstanding Messages

Table 2.2: PM One-Sided Communication Operations

Function Name PMv2
pmxIsReadDone() | Changed
pmxIsWriteDone() | Changed
pmxExport () pmMlock ()
pmxUnexport () pmMunlock ()
pmxRead () Changed
pmxWrite () Changed

to forward the imported handle to another node. The pmxUnexport() function destruct the
handle and exported handle on the othet node(s) is also annuled. Only the node which creates
and exports the handle can un-export the handle.

The PM shared context should have a table which holds the segment ID of low-level commu-
nication library and the handle of PMX. However, the ID of the communication library might
be different from the one after the process is restarted from a checkpoint. Thus, it is required to
reconstruct the segment ID table by calling the pmxExport () function to the every entry in the
table when the program is restarted from a checkpoint while in the process of the pmxStart ()
function.

In the near future it is expected that the memory segment locking will not be required by
having the micro-TLB on NIC hardware or similar mechanism. In this case, the pmxExport ()

20

Node-i Node-j Node-i Node-j

Export(dst) _| Export(src)
_ - -~ | GetSendBuffer() _ - -~ | GetSendBuffer()
- Send() -7 Send()
-~
Receive() Receive()
ReleaseReceiveBuffer() ReleaseReceiveBuffer()
Export(src) Export(dst)
Write(src, dst) \ Read(src, dst) :>
Unexport(src)
- Unexport(src) Unexport(dst) . Unexport(src)
a--"" o--7"

Figure 2.7: One-Sided Communication

typedef struct pm_address_handle {

pm_node_t node; /* network byte order */
pon_pid_t pid; /* network byte order */
pm_addr_t address; /* network byte order */
pm_off_t length; /* network byte order */

} pmAddrHandle;

Figure 2.8: pmDeviceOps Definition in pm.h

function will simply creates and returns the remote memory handle.

Implementation Note on Exit of Process

A process may exit at any time. Thus pmxRead() and pmxWrite() would be carefully
designed so that accessing memory pages which were occupied by the exited process would
never happen.

Issues on Order of One-Sided Communication
[Strict order or relaxed order 7]

2.5.1 pmxExport()

The pmxExport () function allows remote node to access the specified local memory region with
the one-sided communication way. The node value can be PM_NODE_ANY.

21

Table 2.3: Problematic One-Sided Communication

Node A Node B Node C

export a segment to Node B
send the ID to Node C

receive the ID
export to another segment
issue one-sided communication

ST W N

forward the ID to Node B

int pmxExport(pmContext *pmc, pm_addr_t addr,
pm_size_t length, pm_node_t node, pmAddrHandle *handle);

Return Values
PM_SUCCESS Succeeded

EBUSY Already locked
EPROTO Illegal state transition
EIO Internal error

2.5.2 pmxUnexport ()

The pmxUnexport () function destroys the memory handle which is created on the same host.

int pmxUnexport(pmContext *pmc, pmAddrHandle *handle);

Return Values
PM_SUCCESS Succeeded

EBUSY Already locked
EPROTO Illegal state transition
EIO Internal error

2.5.3 pmxRead()

int pmxRead(pmContext *pmc, pmAddrHandle src, pm_off_t soff,
pmAddrHandle dest, pm_off_t doff,
pm_size_t length, pm_desc_t *descp);

If the PM device of the context is Inter-Host routing, then the context may be shared between
processes in a host. In some implementation, a lock during the pmxRead () execution may be

22

required. And when the context is already locked, the pmxRead () returns EBUSY.

Return Values
PM_SUCCESS Succeeded

EBUSY Already locked
EPROTO Illegal state transition
EREMOTE Destination is remote
EFAULT Bad address handle
EIO Internal error

2.5.4 pmxWrite()

int pmxWrite(pmContext *pmc, pmAddrHandle src, pm_off_t soff,
pmAddrHandle dest, pm_off_t doff,
pm_size_t length, pm_desc_t *descp);

If the PM device of the context is Inter-Host routing, then the context may be shared between
processes in a host. In some implementation, a lock during the pmxWrite() execution may be
required. And when the context is already locked, the pmxWrite () returns EBUSY.

Return Values
PM_SUCCESS Succeeded

EBUSY Already locked
EPROTO Illegal state transition
EREMOTE Source is remote
EFAULT Bad address handle
EIO Internal error

2.5.5 pmxIsReadDone()

The pmxIsReadDone() function checks is the posted one-sided write operations succeeded or
not. If they are succeeded, the function retunrs PM_SUCCESS otherwise returns EBUSY.

int pmxIsReadDone(pmContext *pmc, pm_desc_t desc);

Return Values

PM_SUCCESS Succeeded
EBUSY Not yet finished
EIO Internal error

2.5.6 pmxIsWriteDone()

The pmxIsWriteDone() function checks is the posted one-sided write operations succeeded or
not. If they are succeeded, the function retunrs PM_SUCCESS otherwise returns EBUSY.

23

int pmxIsWriteDone(pmContext *pmc, pm_desc_t desc);

Return Values

PM_SUCCESS Succeeded
EBUSY Not yet finished
EIO Internal error

2.6 Checkpoint Support

Table 2.4: PM Checkpoint Operations
Function Name PMv2

pmxSave () Changed
pmxReopen () Changed
pmCheckpoint () | Obsolete
pmRestartSys() | Obsolete
pmRestartUser() | Obsolete
pmMigrateSys() | Obsolete
pmMigrateUser() | Obsolete

r Implementation Note on Hostnames ~N

As shown in the Figure 1.3, the context has neither send nor receive thread at the time of
calling the pmxSave() function. Those thread are re-created at the time of restating the
process. Conversely speaking, there should be enough information to re-create those threads
at restarting in the saved information created by the pmxInitialize() function.

It is the SCore-D’s responsibility to have the same PM context having the same context
number and channel number to be re-allocated and the same number of nodes and the same
number of hosts to be re-allocated when the checkpointed process is restarted. It should be
minded that there is no guarantee to re-allocate the same set of hosts. This could happen
when the process is migrated.

Thus it is not a good idea to rely on hostnames to identify hosts (or nodes). Or the
information depending on hostnames in the saved context must be compensated when the
context is restored by calling the pmxReopen() function.

N y

2.6.1 pmxSave()

int pmxSave(pmContext *pmc, void **savep) ;

If the context is located on a mmap segment which is shared with the other process(es), then the
shared mmap region will not be restored at restart. To avoid this, the pmxSave () function copies
the content of the shared region to an allocated memory area which can be checkpointed and
restarted. After calling this function, the savep points the address of the (possibly malloc()ed)

24

memory region which has enough information to recreate the context.

Return Values
PM_SUCCESS Succeeded

EINVAL Illegal arguments

EBUSY Not ready to save context
EPROTO Illegal state transition
ENOBUFS No buffer space available
EIO Internal error

2.6.2 pmxReopen()

int pmxReopen(pmContext *pmc, pmNode nodes[], void *save);

Recreate context based on the information pointed by the save argument. It must be guaranteed
that it must be recreated having the same number of nodes and numer of processes in a host.
However, the nodes may vary from the one when the context was created and saved. This can
happen when the process is migrated from a host to another.

Return Values
PM_SUCCESS Succeeded

EINVAL Illegal arguments
EBUSY Not ready to restore context
EPROTO Illegal state transition
EIO Internal error
Implementation Note on Soundness
(" P)

There can be the case in which the saved context information MAY be changed accidentally
or maliciously and the pmxReopen() fails and the process to restart may also fails as the
result. However, the Linux kernel or the other process which shares the restored context
should not be affected when this happens. It is the implementer’s responsibility to check
the content of the saved context.

N J

2.7 Network Preemption Support

Table 2.5: PM Preemption Operations
Function Name | PMv2
pmxBreak () pmControlSend ()
pmxWaive () New
pmxContinue() | New

25

2.7.1 pmxBreak()

int pmxBreak(pmContext *pmc) ;

The pmxBreak () function inhibits the state transitions of the messages in the send buffer(s) of
the PM context. In addition to this, in some implementation, the function must be prepared
for the following call of the pmxWaive () function so that the network can be preempted.

At the result of the freezing the states of sending messages, the pmxGetSendBuffer () and
pmSend () functions must return EBUSY without any action.

Return Values
PM_SUCCESS Succeeded

EBUSY Not ready
EPROTO Illegal state transition
EIO Internal error

2.7.2 pmxWaive()

int pmxWaive(pmContext *pmc) ;

Return Values
PM_SUCCESS Succeeded

EBUSY Not ready
EPROTO Illegal state transition
EIO Internal error

2.7.3 pmxContinue()

int pmxContinue(pmContext *pmc);

Return Values
PM_SUCCESS Succeeded

EBUSY Not ready
EPROTO Illegal state transition
EIO Internal error

2.8 Debug

Table 2.6: PM Debug Supports

Function Name | PMv2
pmxDump ()

26

int pmxDump(pmContext *pmc, FILE *file);

27

Chapter 3

Member Context

3.1 SCore KVS

3.1.1 Environment Query

#include <score_kvs.h>
int score_environment(void);

The score_environment () function returns the SCore environment in which the program is
running. The return value of SCORE_LOCAL_ENVIRONMENT means the program is running on
local host. The value of SCORE_SCOUT_ENVIRONMENT means that the program is running on the
SCOUT environment. The SCORE_SCORED_ENVIRONMENT and the SCORE_SCRDMAN_ENVIRONMENT
values means the program is running under SCore-D.

3.1.2 Initilization

#include <score_kvs.h>
int scorekvs_initialize(void);

int score_self_proc;
int score_self_host;
int score_self_node;
int score_num_proc;
int score_num_host;
int score_num_node;

scorekvs_initialize() function must be called before calling any other SCore KVS functions
(except score_environment ()). When the scorekvs_initialize () function call succeeds, then
the score_self proc, score_self_host, score_self node, score_num proc, score_num host,
and score_num node variables are set.

Return Values

0 Succeeded

ENOMEM Not enough memory
others Depending on environment

28

3.1.3 Scoreboard Information

#include <score_kvs.h>
char *scoreboard_get_value(char* name, char* attr);

No matter which SCore environment where the program is running, the content of SCore
database (scorehosts.db) is put into the SCore KVS system and can be retrived by calling the
scorekvs_get_value() function.

host0O.score.net core=2 speed=2200 network=ethernet

Figure 3.1: Example of SCore database description

#include <score_kvs.h>

char *core; .
core = scoreboard_get_value(hostO.score.net’’, Core’’);

Figure 3.2: scoreboard get_value() function usage

If the database file has the record shown in Figure 3.1, then code fragment shown in Figure
3.2 is executed, then the variable core will hold the character string of “2.”

The returned string of the scoreboard get _value() function is allocated by calling the
malloc() function. If there is no record nor attribute name specified in the argument, then the
function returns NULL.

3.1.4 KVS

#include <score_kvs.h>

int scorekvs_put(char* key, char *value);
int scorekvs_get(char *key, char **valp)
int score_barrier(void);

The scorekvs_put() function puts the tuple of key and value pair to the SCore KVS. the
score_barrier () function does the barrier synchronization and commits the put tuples so that
the tuples are accesible from all nodes. When the score barrier() function call succeeds,
the tuples put before the barrier synchronization are accessible by calling the scorekvs_get ()
function. The scorekvs_get() function returns the value string which is allocated by the
malloc() function.

Return Values

0 Succeeded

ENOMEM Not enough memory
others Depending on environment

29

3.1.5 Scoreboard Databasae Access

#include <score_kvs.h>
int scoreboard_get_value(char *key, char *attr, char **xvalp)

The content of scoreboard.db file can be accessed with the scoreboard_get_value() function.
If an attribute has more than one value, then the list of values is obtained as a concatenated
string where each value is delimitted by comma (,).

Return Values

0 Succeeded

ENOMEM Not enough memory
others Depending on environment

3.2 Member Context

#include <pm.h>
#include <pm_internal.h>

#define DEV my_pmx_dev

PMX_PROTOTYPES (DEV) ;

static pmMemberOps ops = PMX_OPS(DEV);

typedef struct PMX_CTXTYPE(DEV) {
pmMemberContext pmc;

/* private data may follow */

} PMX_CTXTYPE(DEV) ;

Figure 3.3: Member Context Definition

3.3 Template

3.3.1 pmmOpenArgs()

int pmmOpenArgs(char **man[], char **opt[]);
int pmmOpenMember (pmCompositeContext *pcc, int argc, char *argv[],
pmNode nodes[], pmMemberContext *pmcp) ;

30

The pmmOpen () function creates a member context and the pmmOpenArgs () function returns the
option names which can be accepted by the pmmOpen() function.

Return Values
PM_SUCCESS Succeeded

EINVAL Illegal arguments
EIO Internal error
others The mmap () function may return with.

PM%_OpenMember(DEV, pcc, argc, argv, nodes, pmm) {

*
* pmCompositeContext* pcc: Composiet context
* int argc: number of argument
* char **xargv: argument vector
*/pmNode nodes|[]: list of hostname and process number pair
*

PMX_CTXTYPE(DEV) *me ;

pm_key_t key;

pm_flags_t flags;

pm_node_t nnodes, nNprocs, procno;

pm_node_t nd, md;

pm_size_t tsmtu, osmtu;

int err;

PMX_PUSH;

PMX_CALL (err=pmxCompositeGetConfig(pcc,&key,&flags,&nnodes,&nprocs,&procno)) ;
if (PMX_IS_FAILED(err)
) PMX_ERETURN(err, "Y%s", pmxErrorString(err));
/*
* create and setup member context (me)
*/
pmm = (pmMemberContext) me;
(*pmm) ->ops = ops;
for(nd=0; nd<nnodes; nd++) {

/%

* md: node number of the member context
* tsmtu: MTU of two-sided communication

* osmtu: MTU of one-sided communication

x/

PMX_CALL(err=pmxCompositeAddRoute(pcc,nd,md,*pmm,tsmtu,osmtu));
if (PMX_IS_FAILED(err)) {
if(err == EBUSY) {
/* then the node entry is already set by the other member */
/* and simple ignore this entry x/
continue;

/* free allocated member context, if needed */
PMX_ERETURN(err, "%s", pmxErrorString(err));
}
}
PMX_RETURN (PM_SUCCESS) ;

Figure 3.4: Code Template of pmmOpenMember ()

31

3.3.2 pmmReset ()

int pmmReset(pmContext *pmc);

Reset the PM context. If there are some messages in the receive and/or send buffer, those
messages will be lost.

Return Values
PM_SUCCESS Succeeded
EIO Internal error

3.3.3 pmmInitialize() and pmmStart()

int pmmInitialize(pmContext *pmc, pm_flags_t flag);
int pmmStart(pmContext *pmc) ;

The pumInitialize () and pmmStart () functions creates and starts the receive and send threads.
Those two function must be called in a process in which actual PM communication takes place.
If a contex is shared between processes to communicate, eash process must call those functions.

The end of calling the pumInitialize () must be barrier-synchronized. The nodes specified
in the pmmOpenContext () MAY not call those functions at the start up. This is because the
node is allocated but there is no process at the time, but the process MAY be invoked in the
future.

r Implementation Note on The Case of Myrinet/MX ~N

In the pmmInitialize() function, the end points of MX are created. In the pmmStart(),
the mx_connect () function is called to connect end points. The barrier synchronization
guarantees the existence of the end points on live hosts. Note that there can be the case
where some processes on some hosts are not created and there are no end points on those
hosts. This can happen when dynamic host allocation (creation) on MPI-2 takes place.

Return Values
PM_SUCCESS Succeeded

EBUSY Device already opened
EPROTO Illegal state transition
ENOLINK Device has no link
EHOSTUNREACH there is an unreachable node
EIO Internal error

3.3.4 pmmStop()

int pmmStop(pmContext *pmc) ;

32

Stop and destroy receive and send threads corresponding to the calling process. Those threads
can be restarted or recreated by calling the pumInitialize() and pmmStart() functions.

Return Values
PM_SUCCESS Succeeded

EBUSY Device already opened

EPROTO Illegal state transition

EAGAIN There is at least one thread communicating
EIO Internal error

3.3.5 pmmBreak() and pmmWaive ()

int pmmBreak(pmContext pmc) ;
int pmmWaive(pmContext pmc);

Stop receive and send threads for network preemption (gang scheduling). The end of calling the
pmmBreak () must be barrier-synchronized.

Return Values
PM_SUCCESS Succeeded

EBUSY Device already opened

EPROTO Illegal state transition

EAGAIN There is at least one thread communicating
EIO Internal error

3.3.6 pmmContinue()

int pmmContinue(pmContext pmc);

Resume the suspended receive and send threads which are suspended by calling the pmmBreak ()
and pmmWaive () functions.

Return Values
PM_SUCCESS Succeeded

EBUSY Device already opened
EPROTO Illegal state transition
EIO Internal error

3.3.7 pmmClose()

int pmmClose(pmContext *pmc);

33

The pmmClose () function closes the PM context which was created by calling the pmmOpenContext ().
After returning this function, the specified PM context will be invalid to access.

Return Values
PM_SUCCESS Succeeded

EBUSY Device already opened
EPROTO Illegal state transition
EIO Internal error

3.3.8 pmmNotCommunicating()

The pmmNotCommunicating() function returns PM_SUCCESS if there is no outstanding two-sided
and one-sided communication. Otherwise it returns EBUSY.

int pmmNotCommunicating(pmContext *pmc);

The pmmNotCommunicating() function must be designed and implmented so that the func-
tion can be called on the PM context which is not called the pmmInitialize() and the
pmmStart () functions, but those functions are already called by the process which is differ-
ent from the process calling the pmmNotCommunicating() function.

Return Values
PM_SUCCESS Succeeded
EBUSY There are some outstanding communications

3.3.9 pmmGetSendBuffer()

To send a message, the pmmGetSendBuffer () function is called to allocate a send buffer.

int pmmGetSendBuffer(pmContext *pmc, pm_node_t node, void **bufp,
pm_size_t length, pm_desc_t *descp);

It returns the address of the allocated buffer and the send buffer descriptor. The pmmGetSendBuffer ()
function can be called by different processes or threads on the same shared PM context.

The returned buffer address is aligned to machine dependent address so that the buffer can
be casted to any data type.

The send buffer information can be obtained by calling the pmmGetSendDescInfo() function
on the send buffer descriptor returned by the pmmGetSendBuffer () function.

It is not allowed to send a message to the node itself, nor to send a message having zero
length.

If the PM device of the context is Inter-Host routing, then the context may be shared between
processes in a host. Therefor the pmmGetSendbuffer () should have a lock during its execution.

34

And when the context is already locked, the pmmGetSendBuffer () returns EBUSY.

Return Values
PM_SUCCESS Succeeded

ENOBUFS No buffer space available

EBUSY Already locked

EINVAL Illegal arguments

EPROTO Illegal state transition

EMSGSIZE Message too long or zero message size
ERANGE Illegal node number

EIO Internal error

3.3.10 pmmGetSendDescInfo()

int pmmGetSendDescInfo(pmContext *pmc, pm_desc_t desc,
pmSendDescInfo *infop);

/*
* PM Descriptor Info.
*/
typedef struct pm_send_desc_info {
int status; /* status */
pn_addr_t addr; /* buffer address */
pm_size_t length; /* message length */

} pmSendDescInfo;

Figure 3.5: pmSendDescInfo Definition

And the pmSendDescInfo structure is defined as above. If the corresponding message is
already sent or not found in the PM context, then the pmmGetSendDescInfo() function returns
EBADR.

Return Values

PM_SUCCESS Succeeded

EBADR No such descriptor
EIO Internal error

3.3.11 pmmTruncateBuffer()

int pmmTruncateBuffer(pmContext *pmc, pm_desc_t desc,
pm_size_t length);

The pmmTruncateBuffer () function can shrinks the send buffer length to the specified length.
The pmmTruncateBuffer () function can be called any number of times in the execution be-
tween the call of the pmmGetSendBuffer () function and the call of the pumSend () function, and
shrinked buffer can be expanded up to the length which is specified by the pmmGetSendBuffer ()

35

function. Setting the length of zero results in returning an error (EINVAL).

Return Values
PM_SUCCESS Succeeded

EINVAL Illegal arguments
EBUSY Already locked
EPROTO Illegal state transition
EIO Internal error

3.3.12 pmmKeepSendDesc ()

int pmmKeepSendDesc(pmContext *pmc, pm_desc_t desc);

The pmmReleaseSendDesc () function destroys the send descriptor which is kept by calling the
pmSend () function.

If the pmmKeepSendDesc() function is called, then the buffer descriptor is kept and the
corresponding buffer region must not be reclaimed, until the descriptor is released with calling
the pmmReleaseSendDesc () functoion.

Return Values

PM_SUCCESS Succeeded

EBADR No such descriptor
EIO Internal error

3.3.13 pmmSend()

Once the content of the send message is fixed, then the pmmSend () function is called to send the
message. After calling the pmmSend () function, the modification on the content of the allocated
send buffer may not be refelected to the received message.

int pmmSend(pmContext *pmc, pm_desc_t desc);

If the PM device of the context is Inter-Host routing, then the context may be shared between
processes in a host. In some implementation, a lock during the pmmSend () execution may be
required. And when the context is already locked, the pmmSend () returns EBUSY.

Return Values
PM_SUCCESS Succeeded

EBADR No such descriptor
EBUSY Already locked
EPROTO Illegal state transition
EIO Internal error

3.3.14 pmmReleaseSendDesc()

int pmmReleaseSendDesc(pmContext *pmc, pm_desc_t desc);

36

The pmmReleaseSendDesc () function destroys the send descriptor which is kept by calling the
pmSend () function.

Return Values
PM_SUCCESS Succeeded

EBADR No such descriptor
EBUSY Already locked
EPROTO Illegal state transition
EIO Internal error

3.3.15 pmmIsSendDone()

int pmmIsSendDone(pmContext *pmc);

Return Values
PM_SUCCESS Succeeded
EBUSY Not vet

EIO Internal error

3.3.16 pmmReceive()

The pmmReceive () function tries to get a received message.

int pmmReceive(pmContext *pmc, void **bufp, pm_size_t *sizep,
pm_desc_t *descp);

The pmmReceive() function returns the address of the received message and the receive
buffer descriptor, if there is a received message.

The returned buffer address is aligned to machine dependent address so that the buffer can
be casted to any data type.

Return Values
PM_SUCCESS Succeeded

EINVAL Illegal arguments

EBUSY Already locked

EPROTO Illegal state transition

ENOBUFS No message to receive available
ESHUTDOWN Receiving is disabled

EIO Internal error

3.3.17 pmmReleaseReceiveBuffer()

int pmmReleaseReceiveBuffer(pmContext *pmc, pm_desc_t desc);

37

The descriptor is released and corresponding buffer region is reclaimed when the pmmReleaseReceiveBuffer ()
is called. There is no way and no need of getting information from the receive buffer descriptor.

Return Values
PM_SUCCESS Succeeded

EBUSY Already locked
EPROTO Illegal state transition
EBADR No such descriptor
EIO Internal error

3.3.18 pmmBeforeSelect()

int pmmBeforeSelect(pmContext *pmc, fd_set *fds, int *maxfdp,
sigset_t *sigmask);

The pmmBeforeSelect () function tells PM context that user program is going to block to wait
for incoming messages. It returns the file descriptor(s) in £ds, the maximum number of the file
descriptor, and the signal mask of Linux so that those variables can be passed to the pselect ()
function. There can be the case where user sets those variables and the pmmBeforeSelect ()
function never resets them.

The pmmBeforeSelect () function is designed so that the wait can be implemented with using
the Linux pselect () function. The fds and the maxfdp variables are set by the pmmBeforeSelect ()
function so that they can be passed to the Linux pselect() function. It should be noticed
that the pmmBeforeSelect () function does not always return with the file descriptor(s) to be
pselect Oed. In this case, the maxfdp will be returned unchanged and the fds and fdmaxp may
not be suitable for passing the pselect () function.

Also the sigmask can be passed so that some specific signal(s) can unblock pselect()
function. To avoid the race condition, if a Linux signal is used to unblock the waiting, then
the signal must be blocked in the pmmBeforeSelect() function, and can be unblocked in the
pmmAfterSelect () function.

The pmmBeforeSelect() and the pmmAfterSelect() functions must be called in pair al-
ways. Since it may be very difficult to avoid the race condition in some implementations, the
pmmReceive () function must be called before calling the pselect () function so that the mes-
sages received in prior to the call of the pmmBeforeSelect () function are extracted from the
receive buffer. The pmmBeforeSelect () function call never guarantees the presence of received
message(s) when the pselect () function returns with a positive integer larger than zero. User
program must be programmed to handle the case where the pselect() function tells there
seems to be some received messages, but actually there is no received messages. In addition, the
pselect () may be blocked even if there are some messages which can be be received. Thus it
is not recommended to set the infinite or very larger timeout duration (by setting NULL of the
timeout parameter).

The returned set of the file descriptors MAY be changed while the execution of a parallel
process, especially when the parallel process spawns (adds) the other processes or some processes
in the parallel process terminates. Thus the set of file descriptors must be obtained by the

38

function every time pselect () is called.

Return Values
PM_SUCCESS Succeeded

EBUSY Already locked
EPROTO Illegal state transition
EIO Internal error

3.3.19 pmmAfterSelect()

int pmmAfterSelect(pmContext *pmc) ;

Return Values
PM_SUCCESS Succeeded

EBUSY Already locked
EPROTO Illegal state transition
EIO Internal error

3.3.20 pmmExport()

The pmmExport () function allows remote node to access the specified local memory region with
the one-sided communication way. The node value can be PM_NODE_ANY.

int pmmExport(pmContext *pmc, pm_addr_t addr,
pm_size_t length, pm_node_t node, pmAddrHandle *handle);

Return Values
PM_SUCCESS Succeeded

EBUSY Already locked
EPROTO Illegal state transition
EIO Internal error

3.3.21 pmmUnexport ()

The pmmUnexport () function destroys the memory handle which is created on the same host.

int pmmUnexport(pmContext *pmc, pmAddrHandle *handle);

Return Values
PM_SUCCESS Succeeded

EBUSY Already locked
EPROTO Illegal state transition
EIO Internal error

39

3.3.22 pmmRead()

int pmmRead(pmContext *pmc, pmAddrHandle src, pm_off_t soff,
pmAddrHandle dest, pm_off_t doff,
pm_size_t length, pm_desc_t *descp);

If the PM device of the context is Inter-Host routing, then the context may be shared between
processes in a host. In some implementation, a lock during the pmmRead () execution may be
required. And when the context is already locked, the pmmRead () returns EBUSY.

Return Values
PM_SUCCESS Succeeded

EBUSY Already locked
EPROTO Illegal state transition
EREMOTE Destination is remote
EFAULT Bad address handle
EIO Internal error

3.3.23 pmmWrite()

int pmmWrite(pmContext *pmc, pmAddrHandle src, pm_off_t soff,
pmAddrHandle dest, pm_off_t doff,
pm_size_t length, pm_desc_t *descp);

If the PM device of the context is Inter-Host routing, then the context may be shared between
processes in a host. In some implementation, a lock during the pmmWrite () execution may be
required. And when the context is already locked, the pmmWrite () returns EBUSY.

Return Values
PM_SUCCESS Succeeded

EBUSY Already locked
EPROTO Illegal state transition
EREMOTE Source is remote
EFAULT Bad address handle
EIO Internal error

3.3.24 pmmIsReadDone ()

The pmmIsReadDone() function checks is the posted one-sided write operations succeeded or
not. If they are succeeded, the function retunrs PM_SUCCESS otherwise returns EBUSY.

int pmmIsReadDone(pmContext *pmc, pm_desc_t desc);

Return Values

PM_SUCCESS Succeeded
EBUSY Not yet finished
EIO Internal error

40

3.3.25 pmmIsWriteDone()

The pmmIsWriteDone() function checks is the posted one-sided write operations succeeded or
not. If they are succeeded, the function retunrs PM_SUCCESS otherwise returns EBUSY.

int pmmIsWriteDone(pmContext *pmc, pm_desc_t desc);

Return Values

PM_SUCCESS Succeeded
EBUSY Not yet finished
EIO Internal error

3.3.26 pmmSave()

int pmmSave(pmContext *pmc, void **savep) ;

If the context is located on a mmap segment which is shared with the other process(es), then the
shared mmap region will not be restored at restart. To avoid this, the pmmSave () function copies
the content of the shared region to an allocated memory area which can be checkpointed and
restarted. After calling this function, the savep points the address of the (possibly malloc()ed)
memory region which has enough information to recreate the context.

Return Values
PM_SUCCESS Succeeded

EINVAL Illegal arguments

EBUSY Not ready to save context
EPROTO Illegal state transition
ENOBUFS No buffer space available
EIO Internal error

3.3.27 pmmReopen()

int pmmReopen(pmCompositeContext *pcc, pmContext *pmc,
pmNode nodes[], void *save);

Recreate context based on the information pointed by the save argument. It must be guaranteed
that it must be recreated having the same number of nodes and numer of processes in a host.
However, the nodes may vary from the one when the context was created and saved. This can
happen when the process is migrated from a host to another.

Return Values
PM_SUCCESS Succeeded

EINVAL Illegal arguments

EBUSY Not ready to restore context
EPROTO Illegal state transition

EIO Internal error

41

3.3.28 pmmBreak()

int pmmBreak(pmContext *pmc) ;

The pmmBreak () function inhibits the state transitions of the messages in the send buffer(s) of
the PM context. In addition to this, in some implementation, the function must be prepared
for the following call of the pmmWaive () function so that the network can be preempted.

At the result of the freezing the states of sending messages, the pmmGetSendBuffer () and
pmSend () functions must return EBUSY without any action.

Return Values
PM_SUCCESS Succeeded

EBUSY Not ready
EPROTO Illegal state transition
EIO Internal error

3.3.29 pmmWaive()

int pmmWaive(pmContext *pmc) ;

Return Values
PM_SUCCESS Succeeded

EBUSY Not ready
EPROTO Illegal state transition
EIO Internal error

3.3.30 pmmContinue()

int pmmContinue(pmContext *pmc);

Return Values
PM_SUCCESS Succeeded

EBUSY Not ready
EPROTO Illegal state transition
EIO Internal error

42

Chapter 4

Common Routines

4.1 PM Node Set

#include <pm_nodeset.h>

void pmx_nodeset_clr(pmNodeset*) ;

int pnx_nodeset_isset (pm_node_t, pmNodesetx);
void pmx_nodeset_set (pm_node_t, pmNodesetx) ;
void pnx_nodeset_zero(pm_node_t, pmNodesetx);

pm_node_t pmx_nodeset_find(pm_node_t, pm_node_t, pmNodesetx*);

Figure 4.1: PM Node Set

4.2 Machine Dependent Operations

#include <pm_machdep.h>
void pmx_memory_barrier(void);

double pmx_get_time(void);

int pmx_poll_test(struct pmx_cputimer *ptc);

void pmx_poll_delay(struct pm_cputimer *ptc);

void pmx_poll_timer_reset(struct pm_cputimer *ptc);
void pmx_usec_delay(int usec);

Figure 4.2: PM Machine Dependent Functions

4.3 Spin Lock and Aotmic Op.

PM provides spin-lock functions shown in Figure 4.3.

4.4 Network Byte Order

The underlying protocol should be designed to be used in heterogeneous clusters.

43

#include <pm_internal.h>

int pmx_initlock(pmLock *lock);
int pmx_destroylock(pmLock *lock);
int pmx_trylock(pmLock *lock);

int pmx_unlock(pmLock *1lock) ;

Figure 4.3: PM Spin-Lock and Aotmic Op.

#include <pm_byteorder.h>

uint16_t pmx_ntohs(uint16_t nshort);
uint32_t pmx_ntohl(uint32_t nlong);
uint64_t pmx_ntohll(uint64_t nlonglong);
uint16_t pmx_htons(uint16_t hshort);
uint32_t pmx_htonl(uint32_t hlong);
uint64_t pmx_htonll(uint64_t hlonglong);

Figure 4.4: Network Byte-Ordering Functions

4.5 File Descriptors

#include <pm_internal.h>

int pmx_open(const char *pathname, int flags, mode_t mode);
int pmx_close_on_exec(int);

int pmx_nonblock_mode(int);

Figure 4.5: File Descriptor Related Functions

4.6 Hostname

The pmx_gethostname() function returns FQDN (Full Qualified Domain Name). Unlike the
gethostname () function, the pmx_gethostname () is thread safe.

4.7 Pthread

The pmx_fork pthread() function creates a thread which is in the detached state (unable to
join).

4.8 Temporary Files

The temporary files, including the files for mmap(), must be created under the directory of
/var/score/pm/ devicename/ defined as PM_DIR_PREFIX.

44

#include <pm_internal.h>

int pmx_gethostname(char *name, pm_size_t len);

Figure 4.6: pmx_gethostname ()

#include <pm_internal.h>

int pmx_fork_pthread(void *(*thread_func) (void*), void* argp);

Figure 4.7: pmx_fork pthread()

4.9 Stack Variables

Any PM functions shall not allocate large amount of memory on stack.

4.10 Debug Support

Table 4.1: Value of the PM_DEBUG environment variable

Value Tag Output messages
0 - No information will be displayed. (Default)
1 Error Information of unrecoverable error
2 Warning | Above and information on temporary error
3 Info Above and any information (even if succeeded)
Higher - More messages may be displayed depending on PM device

See 3.4 for the usage of the debug support macros below.

4.11 Misc.

#include <pm.h>
extern const char *pmErrorString(int);

45

#include <pm_internal.h>

PMX_PUSH;

PMX_MEMO(format ...);

PMX_CALL(funcall);

PMX_RETURN(value);
PMX_VRETURNQ) ;

PMX_ERETURN(value, format ...);
PMX_VRETURN(format ...);

Figure 4.8: Macros for debugging

46

Chapter 5

How PM Xfunctions are called in real
world

5.1 Initializing PM for SCore-D

Here is the calling sequence when SCore-D initializes PM context for the communication of
SCore-Ditself.

Table 5.1: Calling Sequence at SCore-D Initialization
Function Note
pmxOpenDevice () Open All Pm devices allocated
pmxGetDeviceAttribute() | Check device attributes
pmxIsReachable () Check network coverage
pmxOpenContext () Open a context for SCore-D comm.
pmxReset ()
pnxInitialize()
barrier synchronization
pmxStart ()
pmxBeforeSelect ()
pmxReceive ()
pmxReleaseReceiveBuffer ()
pmxAfterSelect ()

Z,
o

0 ~J O U i W N~

5.2 Initializing PM for User Processes

Here is the calling sequence to prepare PM contexts for user processes.

5.3 Normal Termination of User Processes

Here is the calling sequence to shutdown PM contexts for user processes.

5.4 Network Preemption

Here is the calling sequence to switch PM contexts for gang-scheduling.

47

Table 5.2: Calling Sequence for Initializing User contexts

No. User SCore-D Note
1 pmx0pen ()
2 pmxAddMember ()
3 | Pass Control FD to SCore-D
4 pmxInitialize()
5 barrier synchronization
6 pmxStart ()

Table 5.3: Calling Sequence for Initializing User contexts

No. | SCore-D

User

Note

U W N =

pmxStop ()
pmxClose ()
exit ()

barrier synchronization

pmxClose ()

5.5 Checkpoint

Here is the calling sequence to checkpoint a user process.

5.6 Restart

Here is the calling sequence to restart user process form a checkpoint.

48

Table 5.4: Calling Sequence for Gang Scheduling

No. SCore-D Signal | Note
1 pmxBreak ()
2 | barrier synchronization
3 pmxWaive ()
4 SIGSTOP | Stop user process(es)
5 | barrier synchronization
6 SIGCONT | Start user process(es)
7 pmxContinue ()
Table 5.5: Calling Sequence for Checkpoint
No. | Signal SCore-D Parity Note
1 pmxStop ()
2 SIGQUIT IFSTOPPED ()
3 barrier synchronization
4 pmnxSave ()
5 pmxReset ()
6 pnxInitialize()
7 barrier synchronization
8 pmxStart ()
9 Checkpoint Parity if needed
10 pmxStop ()
11 pmxClose ()
12 pmxReopen ()
13 pmxInitialize()
14 barrier synchronization
15 pmxStart ()

Table 5.6: Calling Sequence for Restart

No.

User

Note

S T W N =

pmx0Open ()
pmxAddMember ()
pmxResopen ()
pmxInitialize ()
barrier synchronization
pmxStart ()

49

Chapter 6

Development, Test and Tuning

6.1 Test Programs

6.1.1 Functional Test

pmxtest <options> ... <netopts> ...

-v[erbose]

-iter[ation] <N>

—duration <SEC>

-composite <NPROCS>

—-func[tion] [min|ts|os|scored|ckpt|compat|{all}]
-scbd <netname> | -device <devname>[] <opendevice_args>

6.1.2 Performance Test

50

Index

/var/score/pm/devicename/, 44

0, 28--30

EAGAIN, 11, 12, 33

EBADF, 9

EBADR, 14, 15, 17, 35--38

EBUSY, 9, 11--18, 22--26, 32--42
EFAULT, 23, 40

EHOSTUNREACH, 11, 32

EINVAL, 8--10, 13, 14, 16, 25, 31, 35--37, 41

EIO, 8--18, 22--26, 31--42
EMSGSIZE, 13, 35

ENOBUFS, 13, 16, 25, 35, 37, 41
ENOLINK, 11, 32

ENOMEM, 28--30

EPROTO, 11--18, 22, 23, 25, 26, 32--42
ERANGE, 9, 13, 35

EREMOTE, 23, 40

ESHUTDOWN, 16, 37
PMX_DESC_SHIFT, 6

PM_DEBUG, 45

PM_DIR_PREFIX, 44
PM_NODE_ANY, 10, 21, 39
PM_OPT_BLOCKING_RECV, 11
PM_OPT_NO_RECV, 11
PM_SUCCESS, 7--18, 22--26, 31--42
SCORE_LOCAL_ENVIRONMENT, 28
SCORE_SCORED_ENVIRONMENT, 28
SCORE_SCOUT_ENVIRONMENT, 28
SCORE_SCRDMAN_ENVIRONMENT, 28
SIGCONT, 49

SIGQUIT, 49

SIGSTOP, 49

blocking receive, 19

exit, 48

fdmaxp, 17, 38

fdp, 8

fds, 17, 38

gethostname, 44

length, 14, 36

malloc, 29

maxfdp, 17, 38

mmap, 8, 9, 31, 44
mtu_oneside, 10

mtu_twoside, 10

mx_connect, 32

node, 10, 21, 39

nodes, 25, 41

pm.h, 21

pmAttribute, 10
pmCheckpoint, 24
pmControlSend, 25
pmDeviceOps, 21

o1

pmGetFd, 2

pmGetMtu, 4

pmGetSelf, 4
pmGetSendBuffer, 4
pmMigrateSys, 24
pmMigrateUser, 24
pmMlock, 20

pmMunlock, 20

pmNode, 8

pmReceive, 4
pmReleaseReceiveBuffer, 4
pmReopen, 5

pmRestartSys, 24
pmRestartUser, 24

pmSend, 4, 15, 26, 36, 37, 42
pmSendDescInfo, 14, 35
pmTruncatreBuffer, 4

pmc, 9

pmmAfterSelect, 38, 39
pmmBeforeSelect, 38
pmmBreak, 33, 42
pmmClose, 33, 34
pmmContinue, 33, 42
pmmExport, 39
pmmGetSendBuffer, 34, 35, 42
pmmGetSendDescInfo, 34, 35
pmmGetSendbuffer, 34
pmmInitialize, 32--34
pmmIsReadDone, 40
pmmIsSendDone, 37
pmmIsWriteDone, 41
pmmKeepSendDesc, 36
pmmNotCommunicating, 34
pmmOpen, 31

pmmOpenArgs, 30, 31
pmmOpenContext, 32, 34
pmmOpenMember, 9, 31
pmmRead, 40

pmmReceive, 37, 38
pmmReleaseReceiveBuffer, 37, 38
pmmReleaseSendDesc, 36, 37
pmmReopen, 41

pmmReset, 32

pmmSave, 41

pmmSend, 35, 36

pmmStart, 32--34

pmmStop, 32
pmmTruncateBuffer, 35
pmmUnexport, 39

pmmWaive, 33, 42
pmmWrite, 40

pmp, 9

pmxAddMember, 8, 9, 48, 49
pmxAfterSelect, 17, 18, 47
pmxBeforeSelect, 17, 47
pmxBreak, 6, 8, 12, 25, 26, 49
pmxClose, 12, 48, 49
pmxCompositeAddRoute, 9
pmxCompositeGetConfig, 9
pmxContinue, 6, 8, 12, 25, 26, 49
pmxDump, 26

pmxExport, 19--21
pmxGetAttribute, 10
pmxGetDeviceAttribute, 47
pmxGetMtu, 10
pmxGetSendBuffer, 4, 5, 13, 14, 16, 26
pmxGetSendDescInfo, 13, 14
pmxGetSendbuffer, 13
pmxInitialize, 6, 8, 11, 13, 24, 47--49
pmxIsReachable, 47
pmxIsReadDone, 5, 20, 23
pmxIsSendDone, 16
pmxIsWriteDone, 5, 20, 23
pmxKeepSendDesc, 5, 14, 15
pmxNotCommunicating, 12, 13
pmxOpen, 8, 48, 49
pmxOpenContext, 8, 11, 12, 47
pmxOpenDevice, 47

pmxRead, 4, 5, 20--23
pmxReceive, 4, 5, 16--19, 47
pmxReleaseReceiveBuffer, 5, 17, 47
pmxReleaseSendDesc, 5, 15
pmxReopen, 6, 24, 25, 49
pmxReset, 10, 47, 49
pmxResopen, 49

pmxSave, 6, 24, 49

pmxSend, 5, 7, 14, 15
pmxStart, 6, 8, 11, 13, 20, 47--49
pmxStop, 6, 11, 48, 49
pmxTruncateBuffer, 14
pmxUnexport, 20, 22

pmxWaive, 6, 8, 12, 25, 26, 49
pmxWrite, 4, 5, 20, 21, 23
pmx_fork pthread, 44, 45
pmx_gethostname, 44, 45
pselect, 17, 18, 38, 39

save, 25, 41

savep, 24, 41

score_barrier, 29
score_environment, 28
score_num_host, 28
score_num_node, 28
score_num_proc, 28

score_self host, 28

score_self node, 28
score_self_proc, 28
scoreboard_get_value, 29, 30
scorehosts.db, 29
scorekvs_get, 29
scorekvs_get_value, 29
scorekvs_initialize, 28
scorekvs_put, 29

sigmask, 17, 38

tab, 9

52

Composite, 2--4, 6, 8

Environment Variable
PM_DEBUG, 45

ERRNO
0, 28--30
EAGAIN, 11, 12, 33
EBADF, 9
EBADR, 14, 15, 17, 35--38
EBUSY, 9, 11--18, 22--26, 32--42
EFAULT, 23, 40
EHOSTUNREACH, 11, 32
EINVAL, 8--10, 13, 14, 16, 25, 31, 35--37, 41
EIO, 8--18, 22--26, 31--42
EMSGSIZE, 13, 35
ENOBUFS, 13, 16, 25, 35, 37, 41
ENOLINK, 11, 32
ENOMEM, 28--30
EPROTO, 11--18, 22, 23, 25, 26, 32--42
ERANGE, 9, 13, 35
EREMOTE, 23, 40
ESHUTDOWN, 16, 37
PM_SUCCESS, 7--18, 22--26, 31--42

File
/var/score/pm/devicename/, 44
pm.h, 21
scorehosts.db, 29

Issue
Order of One-Sided Communication, 21

Linux Function
exit, 48
gethostname, 44
malloc, 29
mmap, 8, 9, 31, 44
pselect, 17, 18, 38, 39

Macro
PM_DIR_PREFIX, 44
PM_NODE_ANY, 10, 21, 39
PM_OPT_BLOCKING_RECV, 11
PM_OPT_NO_RECV, 11
PMX_DESC_SHIFT, 6
SCORE_LOCAL_ENVIRONMENT, 28
SCORE_SCORED_ENVIRONMENT, 28
SCORE_SCOUT_ENVIRONMENT, 28
SCORE_SCRDMAN_ENVIRONMENT, 28
Myrinet/MX Function
mx_connect, 32

Note
Buffer Descriptor, 6
Error Reporting, 7
Exit of Process, 21
Hostnames, 24
Soundness, 25
The Case of Myrinet/MX, 32

PM
Composite, 2--4, 6, 8
Shmem, 2, 3

Sample Code

blocking receive, 19

SCore Function

pmCheckpoint, 24
pmControlSend, 25

pmGetFd, 2

pmGetMtu, 4

pmGetSelf, 4
pmGetSendBuffer, 4
pmmAfterSelect, 38, 39
pmmBeforeSelect, 38
pmmBreak, 33, 42

pmmClose, 33, 34
pmmContinue, 33, 42
pmmExport, 39
pmmGetSendBuffer, 34, 35, 42
pmmGetSendbuffer, 34
pmmGetSendDescInfo, 34, 35
pmMigrateSys, 24
pmMigrateUser, 24
pmmInitialize, 32--34
pmmIsReadDone, 40
pmmIsSendDone, 37
pmmIsWriteDone, 41
pmmKeepSendDesc, 36
pmMlock, 20
pmmNotCommunicating, 34
pmmOpen, 31

pmmOpenArgs, 30, 31
pmmOpenContext, 32, 34
pmmOpenMember, 9, 31
pmmRead, 40

pmmReceive, 37, 38
pmmReleaseReceiveBuffer, 37, 38
pmmReleaseSendDesc, 36, 37
pmmReopen, 41

pmmReset, 32

pmmSave, 41

pmmSend, 35, 36

pmmStart, 32--34

pmmStop, 32
pmmTruncateBuffer, 35
pmmUnexport, 39

pmMunlock, 20

pmmWaive, 33, 42

pmmWrite, 40

pmReceive, 4
pmReleaseReceiveBuffer, 4
pmReopen, 5

pmRestartSys, 24
pmRestartUser, 24

pmSend, 4, 15, 26, 36, 37, 42
pmTruncatreBuffer, 4
pmx_fork pthread, 44, 45
pmx_gethostname, 44, 45
pmxAddMember, 8, 9, 48, 49
pmxAfterSelect, 17, 18, 47
pmxBeforeSelect, 17, 47
pmxBreak, 6, 8, 12, 25, 26, 49
pmxClose, 12, 48, 49
pmxCompositeAddRoute, 9
pmxCompositeGetConfig, 9

pmxContinue, 6, 8, 12, 25, 26, 49

pmxDump, 26

pmxExport, 19--21
pmxGetAttribute, 10
pmxGetDeviceAttribute, 47
pmxGetMtu, 10

pmxGetSendBuffer, 4, 5, 13, 14, 16, 26

pmxGetSendbuffer, 13
pmxGetSendDescInfo, 13, 14

pmxInitialize, 6, 8, 11, 13, 24, 47--49

pmxIsReachable, 47
pmxIsReadDone, 5, 20, 23
pmxIsSendDone, 16
pmxIsWriteDone, 5, 20, 23
pmxKeepSendDesc, 5, 14, 15
pmxNotCommunicating, 12, 13
pmxOpen, 8, 48, 49
pmxOpenContext, 8, 11, 12, 47
pmxOpenDevice, 47

pmxRead, 4, 5, 20--23
pmxReceive, 4, 5, 16--19, 47

pmxReleaseReceiveBuffer, 5, 17, 47

pmxReleaseSendDesc, 5, 15
pmxReopen, 6, 24, 25, 49
pmxReset, 10, 47, 49
pmxResopen, 49

pmxSave, 6, 24, 49
pmxSend, 5, 7, 14, 15

pmxStart, 6, 8, 11, 13, 20, 47--49

pmxStop, 6, 11, 48, 49
pmxTruncateBuffer, 14
pmxUnexport, 20, 22
pmxWaive, 6, 8, 12, 25, 26, 49
pmxWrite, 4, 5, 20, 21, 23
pselect, 17, 38
score_barrier, 29
score_environment, 28
scoreboard_get_value, 29, 30
scorekvs_get, 29
scorekvs_get_value, 29
scorekvs_initialize, 28
scorekvs_put, 29

Shmem, 2, 3
Signal

SIGCONT, 49
SIGQUIT, 49
SIGSTOP, 49

Struct

pmAttribute, 10
pmDeviceOps, 21
pmNode, 8
pmSendDescInfo, 14, 35

Variable

53

fdmaxp, 17, 38
fdp, 8
fds, 17, 38

length, 14, 36
maxfdp, 17, 38
mtu_oneside, 10
mtu_twoside, 10
node, 10, 21, 39

nodes, 25, 41

pmc, 9

pmp, 9

save, 25, 41
savep, 24, 41
score_num_host, 28
score_num_node, 28
score_num_proc, 28
score_self host, 28
score_self node, 28
score_self_proc, 28
sigmask, 17, 38
tab, 9

o4

