OpenATLib and Xabclib

Developer's Manual for
Version Beta

Information Technology Center, The University of Tokyo and
Central Research Laboratory, Hitachi Ltd.

Januar, v 29, 2010

DISCLAIMER

This software, OpenATLib and Xabclib, is provided by the copyright
holders and contributors, Information Technology Center, The University of
Tokyo and Central Research Laboratory, Hitachi Ltd., "AS IS" and any
express or implied warranties, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose are
disclaimed. In no event shall the copyright owner or contributors be liable for
any direct, indirect, incidental, special, exemplary, or consequential damages
(including, but not limited to, procurement of substitute goods or services;
loss of use, data, or profits; or business interruption) however caused and on
any theory of liability, whether in contract, strict liability, or tort (including
negligence of otherwise) arising in any way out of the use of this software,
even if advised of the possibility of such damage.

1. Overview

In this manual, functions for numerical library developers in OpenATLib and Xabclib
are explained. Fig. 1-1 and Fig. 1-2 show the components of function on Xabclib and
Xabclib.

Eigensolver with Numerical Policy Parameter
Numerical Policy Interface Management Function
OpenATI_EIGENSOLVE OpenATI_READ_POLICY
Eigensolver with Restart Frequency
Auto-tuning Facility Auto-tuning Function
Xabclib_LANCZOS OpenATIl_DAFRT

Sparse Matrix-Vector Multiply
Auto-tuning Function

OpenATI_DSRMV

Setup Function
for OpenATI_DSRMV

OpenATl_DSRMV _Setup

Gram-Schmidt
orthonormalization function

OpenATI_DAFGS

Parameter Management
Function

OpenAT|_BLDATA

Fig. 1-1 Components of Function on Eigensolver.

Linearsolver with
Numerical Policy Interface

OpenATI_LINEARSOLVE

Numerical Policy Parameter
Management Function

OpenATI_READ_POLICY

Linear solver with
Auto-tuning Facility

Xabclib_GMRES

Restart Frequency
Auto-tuning Function

OpenATI_DAFRT

Sparse Matrix-Vector Multiply
Auto-tuning Function

OpenATI_DURMV

Setup Function
for OpenATI_DURMV

OpenATl_DURMYV_Setup

Gram-Schmidt
orthonormalization function

OpenATI_DAFGS

Parameter Management
Function

OpenATI_BLDATA

Fig. 1-2 Components of Function on Linearsolver.

2. OpenATLib : A Common Auto-tuning Interface Library
2.1 Function of OpenATLib and Its Usage

In this section, library for functions and specification on a common auto-tuning
interface, named OpenATLib, is explained. OpenATLib is an Application Programming
Interface (API) to supply auto-tuning facility on arbitrary matrix computation libraries.
For example, estimation function for the best values on algorithmic parameters, and

best implementation for sparse matrix-vector multiplication (SpMxV).

(1) The function
Table 2-1 shows auto-tuning functions providing OpenATLib.

Table 2-1 Auto-tuning Function Providing OpenATLib

Function Name Description

OpenATI_DAFRT Judge increment for restart frequency on
Krylov subspace.
OpenATI_DSRMV Judge the best implementation for double

precision symmetric SpMxV on CRS format.

OpenATI_DURMV Judge the best implementation for double

precision non-symmetric SpMxV on CRS
format.

OpenATI_DSRMV_Setup Setup function for OpenATI_DSRMYV.
OpenATI_DURMV_Setup Setup function for OpenATI_DURMYV.
OpenATI_DAFGS Gram-Schmidt orthonormalization function

with 4 implementations.

OpenATI_BLDATA Set default parameters.

(Block data format for Fortran.)
OpenATI_LINEARSOLVE Over-LinearSolver with numerical policy

interface.

OpenATI_EIGENSOLVE Over-EigenSolver with numerical policy

interface.

The functions provided OpenATLib are classified for the following five categories:
a) Computation Function (Ex. SpMxV)
b) Auxiliary Function (Ex. Specified parameter settings.)
¢) Management Function (Ex. OpenATI_BLDATA)
d) Setup Function (Ex. OpenATI_DSRMV_Setup)

e) Over-Solver (Ex. OpenATI_LINEARSOLVE)
For a) and b) functions, the function names are named by the manner on Table 2-1,
following "OpenATI_" .

Table 2-2 Nomenclature of OpenATLib functions

First Character The character shows data type.
S : Single Precision

D : Double Precision

Second and Third | If the function is auxiliary, it comes "AF".
Characters If the function is computation, it comes matrix kinds
in the second character, and matrix storage format
in the third character.

® The second character:

: Symmetric.

: Non-symmetric.

: Diagonal.

H O g »n

: Tridiagonal.

® The third character:
R : CRS Format.

C : CCS Format.
Fourth and Fifth | Process Kinds.

Characters MV: Matrix-vector multiplication.

RT: Restart frequency.

(2) Include file “OpenAT.inc”

If you include OpenAT.inc in your program, you can refer and update the following
system global variables without definition. After the values are updated, all inner
parameters on each OpenATI function are set to the updated values. See each

specification for the details of system global variables.

(a) OpenATI_DAFRT_IPARM._1

A flag to perform auto-tuning based on MM ratio.
(b) OpenATI_DAFRT_RPARM_1

The MM ratio.
(c) OpenATI_DSRMV_IPARM_1

A search area parameter for symmetric SpMxV.

(d) OpenATI_DURMV_IPARM_1

A search area parameter for non-symmetric SpMxV.
(e) OpenATI_DURMV_IPARM_2

The number of iteration to evaluate non-symmetric SpMxV.
(f) OpenATI_DAFGS_IPARAM_1

The implementation of Gram-Schmidt orthonormalization.

(3) How to use the OpenATLib.
If you want to develop own library using OpenATLib, you should follow the following
processes.
1. Put the include file of “OpenAT.inc”, and static library of “libOpenAT.a” to current
directory.
2. Include “OpenAT.inc” in program on own library source code, like Fig. 2-1.
3. Call target functions of OpenATLib on own library source code.

4. Describe makefile to link “libOpenAT.a”.

INCLUDE “OpenAT.inc”

Fig. 2-1 An Example of OpenATLib including.

2.2 OpenATI_DAFRT
2.2.1 Overview of the function

To perform Krylov subspace method, for example, Lanczos method for eigensolvers
computation and GMRES method for linear equation solvers, they need to specify the
dimension of the inner Krylov subspace to fix available memory space. If the iteration
number is over for the fixed dimension, new computation is done with the current
calculated approximation as initial vector to make new Krylov subspace. This process is
called “restart”, and the number of iterations is called “restart frequency”. If the restart
frequency is too small, it causes stagnation of reduction for residual vector, which is
calculated by real solution and approximation vectors, then the number of iterations is
increased. On the other hand, if the restart frequency is too big, it causes heave
computation to make big Krylov subspaces, hence the execution time is very increased.
The best frequency depends on input sparse matrix numerical condition, and it is very
tough to estimate the best frequency without execution. Hence in the library point of
view, we need on the fly, namely run-time, auto-tuning facility.

OpenATI_DAFRT enables us to judge the incensement of frequency based on the

current information of Krylov subspace.

2.2.2 Overview of the auto-tuning method

The previous estimation for the best restart frequency is difficult; it can detect
stagnation based on the run-time history of residuals. The method is proposed in [1].

The norm of the stagnation is defined by the value that maximum value divided by
minimal vale from t-th time to s-th time. The values called “Ratio of Max-Min in
residual”’. Hereafter, we describe the ratio “MM ratio” for simplification.

The MM ratio to past #th time, namely R7(s,?) , can be described with ;th residual r;

as follows:

max, {r, (z);z=s—t+1---s

R (s,t)= .
(s:1) min, {ri (z);2= s—t+1,---,s}

If restart frequency is big enough, the residual tends to reduce bigly, hence MM ratio is

going to be big. If restart frequency is small, it tends to cause stagnation, hence MM

ratio is going to be small. Hence, we can control restart frequency at run-time monitor

for the MM ratio. If the MM ratio is going to be small to a fixed value at run-time, the

frequency should be increased.

2.2.3 Argument Details and Error Code
(1) Argument Details

Argument Type 10 Description
NSAMP Integer | INPUT The number of sampling points.
SAMP Double | INPUT The values of sampling points.
(NSAMP)
IRT Integer | OUTPUT 0 : Do not need to increase restart frequency.
1 : Need to increase restart frequency.
INFO Integer | OUTPUT Error code.

(2) Global Variables Defined on "OpenAT.inc”

Variable Name Type Initial Description
Value
OpenATI_DAFRT_IPARM_1 Integer 1|1 : Judge incensement of restart
frequency based on MM ratio.
OpenATI_DAFRT RPARM_1 Double 100.0 | Threshold value for MM ratio.
(3) Error Code
Value Description

Normal return.

2.2.4 Usage Example
Judgment of restart frequency is per 5 iterations. If it is needed to increase, the

frequency is increased by stridden 1. In this case, you can write the code like Fig. 2-2.

/[Parameter Definition
INCLUDE “OpenAT.inc¢” // Include OpenAT.inc
MSIZE=1 /l Initial restart frequency.
1=5 /l Judgment frequency.

~ omission ~

IF RSDID < TOL RETURN /I Convergence Test
SAMP (K)=RSDID //Set residual to SAMP(K).
IF (mod (K, I) .eq. 0) THEN //Call DAFRT per I times.
IRT=0
CALL OpenATI_DAFRT (I, SAMP,IRT,INFO)
IFIRT=1 MSIZE=MSIZE+1 //Increase restart frequency.
K=0

END IF

K=K+1

~ omission ~

Fig. 2-2 An Example of OpenATI_DAFRT description.

10

2.3 OpenATI_DSRMYV and OpenATI_DURMYV, OpenATI_DSRMV_Setup,
OpenATI_DURMV_Setup

2.3.1 Overview of the function

Sparse matrix-vector multiplication (SpMxV) is crucial function and widely-used in
many iterative methods. Its execution time directly affects total execution time in many
cases. There are many implementations to perform SpMxV. The best implementation
depends on computer environment and numerical characteristics of input sparse matrix.
It is hence difficult to fix the best method. We need auto-tuning method at run-time to
adapt user's computer environment and matrices.

OpenATI_DSRMYV is designed for double symmetric SpMxV, and OpenATI_DURMV

is designed for double non-symmetric SpMxV auto-tuning APIs for their

implementations at run-time.

2.3.2 Overview of auto-tuning method

In this function, the API surveys all candidates of SpMxV implementations in the
first iteration time, then select the best implementation after that. This method was
proposed by [2].

The following several implementations are supplied for OpenATI_DSRMV(3 kinds)
and OpenATI_DURMV(4 kinds) in version beta.

® OpenATI_DSRMV
S1) Row Decomposition Method.
S2) Normalized NZ Method.
S3) Normalized NZ Method, with vector reduction parallelization.

® OpenATI_DURMV
U1) Row Decomposition Method.
U2) Normalized NZ Method (for scalar multi-core processors).
U3) BSS (Branchless Segmented Scan) (for scalar multi-core processors).

U4) Original Segmented Scan (for vector processors).

11

[Row Decomposition Method and Normalized NZ Method]
® Row Decomposition Method
Input Matrix is divided into the number of threads blocks for balancing the number
of row processed by each thread.
® Normalized NZ Method
Input Matrix is divided into the number of threads blocks for normalizing the

number of non-zero element processed by each thread.

Figure 2-3 shows an example of Row Decomposition Method and Normalized NZ

Method in case of 6 dimension matrix processed by 4 threads.

Thread 1 ol o * 3 Thread 1 ol ol * 3

¥ |x|x Thread 2 x| x| x 3
Thread 2 * * | % 6 Thread 3 * * |k 3
Thread 3 * 1 *

* Thread 4 *
Thread 4 * 2 * 3
* : Non—Zero
Row Decomposition Method Normalized NZ Method

Fig 2-3 An example of Row Decomposition Method and Normalized NZ Method

[Original Segmented Scan method and BSS method]

Original Segmented Scan[5] is designed for sparse matrix multiplication on vector
multiprocessors. In this method, input matrix is divided into fixed length of Non-Zero
element group. These Non-Zero element group are named segment-vector, In a code of
Original Segmented Scan, innermost loop has fixed length of loop and mask process
with FLAG representing the beginning of row. (Fig 2-4 shows an example of
segment-vector of length 6 processed by 5 threads).

BSS is the method modified for scalar multi-core system by removing IF operator for
mask process in innermost loop. In this method, row pointer array in CSR format is
extended for segment-vector (In Fig2-4, IRP is expanded MFLAG) .

12

[example]

input matrix row pointer (IRP)
(1) of of 2] o] o] o] ol [1]3]7]11]15]18]26]28]29]31]
ON3) O, O] O| 4| 5| 6 \
7) 8] 0| 9 0_10_ 0| O segment—vector 1
11) 012313 0| 0|14 O
O O] O O(15)] 0|16 |17
18) 19|20 (21|22 |23|24|25)
026 0(27] 0| 0| O] O
o of of of 028) o] #
o o o| of30] 0/ 0
O first element in eaclyrow MFLAG JFSTART
1 0
3 |le— | 2
7 L 4
1 / 7
13 8
15 12
18
(O F|F|F 19
FlrlF|F|(T) 25
() F(T)F|F 26
FlF|IF|F(T) 28
FT) F|F (1) 29
Flr((T) F|F 31
Original Segmented Scan BSS

Fig 2-4 An example of Original Segmented Scan and BSS.

13

If you want to specify SpMxV implementation of OpenATI_DSRMV or
OpenATI_DURMY, you need to run setup function before call OpenATI_DSRMV or
OpenATI_DURMV.

OpenATI_DSRMV_Setup

(S1) No necessary to run setup function.

(S82) Fix the groups of rows processed by each thread for normalized non-zero
elements.

(S3) Fix the groups of rows processed by each thread for normalized non-zero

elements, and the start and end point of reduction part of each thread.

OpenATI_DURMV_Setup

(U1) No necessary to run setup function.

(U2) Fix the groups of rows processed by each thread for normalize non-zero
elements.

(U3) Set array of MFLAG and JFSTART for BSS.

(U4) Set array of FALG for Original Segmented Scan

14

2.3.3 Argument Details and Error Code of OpenATI_DSRMV_Setup

(1) Argument Details
Argument Type 10 Description
N Integer | INPUT The number of dimension for the matrix. (N>=1)
NNZ Integer | INPUT The number of non-zero elements for the matrix.
IRP(N+1) Integer | INPUT Pointers to first elements on each row for the
matrix.
ICOL(NNZ) | Integer | INPUT The non-zero row indexes for the matrix.
ICASE Integer | INPUT Set the number corresponding implementation of
SpMxV in OpenATI_DSRMV.
11: No necessary to run this function.
121 Create information for Normalized NZ
Method.
13: Create information for Normalized NZ
Method with vector reduction
parallelization
SINF Double | OUTPUT If ICASE=11
(LSINF) No returns.
If ICASE=12,13
Returns the groups of rows processed each
thread for OpenATI_DSRMV.
LSINF Integer | INPUT The size of SINF
ICASE=11:
LSINF>=0
ICASE=12:
LSINF >= int(0.5*NUM_SMP)+1
ICASE=13:
LSINF >= N+NUM_SMP+3
NUM_SMP | Integer | INPUT Set the number of threads to the argument.
INFO Integer | OUTPUT Error Code

(2)Error Code

Value

Description

Successful exit.

100

Invalid ICASE value is inputted.

15

200 Invalid LSINF value is inputted. ICASE=12 or 13)

16

2.3.4 Argument Details and Error Code of OpenATI_DURMYV_Setup
(1) Argument Details

Argument

Type

10

Description

N

Integer

INPUT

The number of dimension for the matrix. (N>=1)

NNZ

Integer

INPUT

The number of non-zero elements for the matrix.

IRP(N+1)

Integer

INPUT

Pointers to first elements on each row for the

matrix.

ICASE

Integer

INPUT

Set the number corresponding implementation of

SpMxV in OpenATI_DURMV.

11: No necessary to run this function.

121 Create information for Normalized NZ
Method.

13: Create information for BSS.

21! Create information for Original Segmented

Scan

UINF
(LUINF)

Double

OUTPUT

ICASE=11:
No returns.

ICASE=12,13,21:
Returns the groups of rows processed each
thread or information array for segmented

scan.

LUINF

Integer

INPUT

The size of UINF
ICASE=11:
LUINF >= 0
ICASE=12:
LUINF >= int(0.5*NUM_SMP)+1
ICASE=13:
LUINF >= int(1.5*N)+546
ICASE=21:
LUINF >= int(1.125*NNZ)+273

NUM_SMP

Integer

INPUT

Set the number of threads to the argument.

INFO

Integer

OUTPUT

Error Code

17

(2)Error Code

Value Description
0 Successful exit.
100 Invalid ICASE value.
200 LUINF value exceeds upper limit of Integer.
300 Invalid LUINF value (ICASE=12,13,21).

18

2.3.5 Argument Details and Error Code for OpenATI_DSRMV
(1) Argument Details

Argument Type 10 Description

N Integer | INPUT The number of dimension for the matrix. (N>=1)

NNZ Integer | INPUT The number of non-zero elements for the matrix.

IRP(N+1) Integer | INPUT Pointers to diagonal elements on each row for the
matrix.

ICOL(NNZ) | Integer | INPUT The non-zero row indexes for the matrix.

VAL(NNZ) | Double | INPUT The non-zero elements for the matrix.

X(N) Double | INPUT Right hand side vector elements.

Y(N) Double | OUTPUT Solution vector elements for SpMxV.

ICASE Integer | INPUT/ If OpenATI_DSRMV_IPARM_1=1, then set the

ouTPUT number of implementations.
If OpenATI_DSRMV_IPARM_1=2 or 3, the best
number of implementations returns.
The numbers of implementations are:
11: Row Decomposition Method.
12: Normalized NZ Method.
13: Normalized NZ Method, with vector reduction
parallelization.

NUM_SMP | Integer | INPUT If OpenATI_DSRMV_IPARM_1=1 and ICASE=13,
or OpenATI_DSRMV_IPARM_1=3, then set the
number of threads to the argument.

WK(N, Double | WORK If OpenATI_DSRMV_IPARM_1=1 and ICASE=13,

NUM_SMP) or OpenATI_DSRMV_IPARM_1=3, then set
workspace to the argument.

SINF Double | INPUT/ If OpenATI_DSRMV_IPARM_1=1

(LSINF) OUTPUT (INPUT)

ICASE=11 : Not necessary to set.
ICASE=12,13 : Set SINF retuned by

OpenATI_DSRMV_Setup.
If OpenATI_DSRMV_IPARM_1=2,3
(INPUT)

Not necessary to set.

19

(OUTPUT)
Returns setup information

implementation.

for

best

LSINF

Integer

INPUT

The size of SINF
If OpenATI_DSRMV_IPARM_1=1
ICASE=11:
LSINF >=0
ICASE=12:
LSINF >= int(0.5*NUM_SMP)+1
ICASE=13:
LSINF >= N+NUM_DMP+3
If OpenATI_DSRMV_IPARM_1=2
LSINF >= int(0.5*NUM_SMP)+1
If OpenATI_DSRMV_IPARM_1=3
LSINF >= N+NUM_SMP+3

INFO

Integer

OUTPUT

Error code.

20

(2) Global Variables Defined On "OpenAT.inc”

Variable Name Type Initial Description

Value

OpenATI_DSRMV_IPARM_1 | Integer 1 | 1:Perform SpMxV specified by ICASE.

2 : Perform SpMxV to judge the best
methods between two methods,
except for reduction parallel
implementation.

3 : Perform SpMxV to judge the best

method among three methods. Note
that workspace according to the

number of threads is needed.

(3) Error Code

Value Description
0 Successful exit.
100 The value of ICASE is illegal.
(If OpenATI_DSRMV_IPARM_1=1.)
200 The value of OpenATI_DSRMV_IPARM_1 is illegal.

21

2.3.6 Argument Details and Error Code for OpenATI_DURMV
(1) Argument Details

Argument

Type

10

Description

N

Integer

INPUT

The number of dimension for the matrix. (N>=1)

NNZ

Integer

INPUT

The number of non-zero elements for the matrix.

IRP(N+1)

Integer

INPUT

Pointers to first elements on each row for the

matrix.

ICOL(NNZ)

Integer

INPUT

The non-zero row indexes for the matrix.

VAL(NNZ)

Double

INPUT

The non-zero elements for the matrix.

X(N)

Double

INPUT

Right hand side vector elements.

Y(N)

Double

ouTPUT

Results vector elements for SpMxV.

ICASE

Integer

INPUT/
OouTPUT

If OpenATI_DURMV_IPARM_1=1, then set the
number of implementations.
If OpenATI_DURMV_IPARM_1=2 or 3, the best

number of implementations returns.

The numbers of implementations are:
11: Row Decomposition Method.
12: Normalized NZ Method (for scalar multi-core
processors).
13: BSS (for scalar multi-core processors).
21: Original Segmented Scan (for vector

pI‘OCGSSOI‘S).

UINF
(LUINF)

Double

INPUT/
OUTPUT

If OpenATI_DURMV_IPARM _1=1
(INPUT)
ICASE=11 : Not necessary to set
ICASE=12,13,21 :Set UINF returned by
OpenATI_DURMV_Setup.
If OpenATI_DURMV_IPARM_1=2,3
(INPUT)
Not necessary to set.
(OUTPUT)
Returns setup information for best

implementation.

LUINF

Integer

INPUT

The size of UINF

22

If OpenATI_DURMV_IPARM_1=1
ICASE=11:
LUINF >= 0
ICASE=12:
LUINF >= int(0.5*NUM_SMP)+1
ICASE=13:
LUINF >= int(1.5*N)+546
ICASE=21:
LUINF >= int(1.125*NNZ)+273
If OpenATI_DURMV_IPARM_1=2.
LUINF >= int(0.5*NUM_SMP)+1
If OpenATI_DURMV_IPARM_1=3,
LUINF >= int(1.5*N)+546

NUM_SMP

Integer

INPUT

Set the number of threads to the argument.

INFO

Integer

OUTPUT

Error Code.

23

(2) Global Variables Defined on "OpenAT.inc”.

Variable Name Type Initial Description
Value

OpenATI_DURMV_IPARM_1 | Integer 1| 1 : Perform SpMxV specified by
ICASE.
2 and 3 : Perform SpMxV to judge the

best method among three

implementations.

OpenATI_DURMV_IPARM_2 | Integer 1| The number of iterations for
non-symmetric SpMxV in performance
evaluation.

(3)Error Code

Value Description
0 Successful exit.
100 The value of ICASE is illegal.
(If OpenATI_DURMV_IPARM_1=1.)
200 The value of OpenATI_DURMYV_IPARM_1 is illegal.

24

2.3.5 Usage Example
Search the best implementation of SpMxV in the first iteration time, then the best
implementation is used after that based on the run-time searching. To implement this,

see the code of Fig. 2-5.

/[/[Parameter definition.

INCLUDE “OpenAT.inc” /I Include OpenAT.inc
OpenATI_ DSRMV_IPARM_1=3 //Initialize DSRMYV parameter.
ICASE=0 /Mnitialize DSRMV parameter.

LSINF= N+NUM_SMP+3
ALLOCATE(SINF(LSINF))

~ omission ~

/[The first SpMxV.

CALL OpenATI_DSRMV (N, NNZ, IRP, ICOL, VAL, X, Y, ICASE,
NUM_SMP, WK, SINF, LSINF, INFO)

OpenATI_DSRMV_IPARM_1=1 //Hereafter, we select the best one.

~ omission ~
/ SpMxV after run-time searching.
/l We can use the best implantation based on previous information.
CALL OpenATI_DSRMV (N, NNZ, IRP, ICOL, VAL, X, Y, ICASE,

NUM_SMP, WK, SINF, LSINF, INFO)

~ omission ~

Fig. 2-5 An Example of OpenATI_DSRMYV Description.

25

If you want to specify SpMxV implementation in OpenATI_DSRMYV, implement the
code like Fig.2-6.

/| Parameter definition.

INCLUDE “OpenAT.inc” /I Include OpenAT.inc
OpenATI_DSRMV_IPARM _1=1 //Initialize DSRMV parameter.
ICASE=13 /I Initialize DSRMV parameter.

~ omission ~

/l The first SpMxV.

LSINF=N+NUM_SMP+3 /[Allocate memory for setup

ALLOCATE(SINF(LSINF))

CALL OpenATI_DSRMV_Setup(N,NNZ,IRP,ICOL,ICASE,
SINF, LSINF, NUM_SMP,INFO)

CALL OpenATI_DSRMV (N,NNZ,IRP,ICOL,VAL,X,Y,ICASE,
NUM_SMP, WK, SINF, LSINF, INFO)

~ omission ~

I SpMxV after run-time searching.

/l We can use the best implantation based on previous information.

CALL OpenATI_DSRMV (N,NNZ,IRP,ICOL,VAL,VEC,JPARM,
IPARM,RPARM,SINF,LSINF,INFO)

~ omission ~
Fig.2-6 An example of OpenATI_DSRMYV Description with specified SpMxV

implementation.

26

2.4 OpenATI_DAFGS

2.4.1 Overview of the function

Vector Reorthonormalization spends a lot of CPU time in many Krylov Subspace
methods. Gram-Schmidt Reorthonormalization method is typcal Reorthonormalization
method. There are many implementations to perform Gram-Schmidt method, and
trade-offs must be made between computational complexity and accracy. Hence, It is
difficult to fix the best implementation.

OpenATI_DAFGS is API that supplies selectable from 4 kinds Gram-Schmidt

Reorthonormalization implementation.

2.4.2 Overview of Reorthonormalization method

In this function, the API has 4 kinds Gram-Schmidt Reorthonormalization method.
Selected method is indicated by value of Global Variables 'OpenATI_DAFGS_IPARM_1’.
By default , Modified Gram-Schmidt method is selected.

(1) Classical Gram-Schmidt method (CGS)
When Krylov Subspace size is large, accuracy of reorthonormalization is lowering.
Acceleration performance by parallelization is excellent.
(2) DGKS method
This method supplies improved accuracy by running CGS 2 times. DGKS method
computational complexity needs twice as many as CGS’ one.
(3) Modified Gram-Schmidt method (MGS)
MGS is most popular Gram-Schmidt method. This method is most effective
performance and accuracy.
(4) Blocked Classical Gram-Schmidt method (BCGS)
BCGS method is orthonormalized by intra-block with CGS, by inter-block with
MGS. Block length is 4.

27

2.4.3

(1) Argument Details

Argument Details and Error Code

Argument Type 10 Description
NORMALF | Integer | INPUT Normalization of Output vector
LG 0 : not normalized

1 : normalized
N Integer | INPUT Vector length (N>=1)
X(N) Double | INPUT Vector for normalization
QLQ,MM) | Double | INPUT Orthonormalized vectors Q(1:N,MM)
LQ Integer | INPUT Leading Dimension of Q
MM Integer | INPUT The number of vector of Q
HR(MM) Double | OUTPUT Inner product X by Q(1:N,M)
IDGKS Integer | OUTPUT Iterative refinement of DGKS

0 : no Iterative refinement

1 : Tterative refinement

(2) Global Variables Defined on "OpenAT.inc”

Variable Name Type Initial Description
Value
OpenATI_DAFGS_IPARM_1 Integer 2 ! Classical Gram-Schmidt

0
1:DGKS

2 : Modified Gram-Schmidt
3 : Blocked Gram-Schmidt

28

2.5 OpenATI_LINEARSOLVE and OpenATI_EIGENSOLVE

: Sparse iterative solvers with Numerical policy

2.5.1 Overview of the function
Numerical policy is requirement and priority of memory, CPU time, accuracy and
others specified by library user. OpenATI supplies OpenATI_LINEARSOLVE is
designed for unsymmetric liner problem, and OpenATI_EIGENSOLVE is designed for
symmetric eigenvalue problem as sparse iterative solvers with numerical policy.
OpenATI_LINEARSOLVE and OpenATI_EIGENSOLVE are Over-Solvers that call

Xabclib and set optimized arguments automatically on user’s numerical policy.

2.5.2 Overview of numerical policy
If you want to use Over-Solvers, you make numerical policy file with following format,

and input numerical policy file path into global variable “OPENATI_POLICY”.

Policy file’s format is as follow.

<keywords> = <value>

There
configurable keywords. Unregistered <keywords in policy file is inputted the default

POLICY/CPU/RESIDUAL/MAXMEMORY/MAXTIME/PRECONDITIONER as

1s

value. The explanation of all <keywords is as follow.

POLICY =

<value>

<value>

TIME / ACCURACY / MEMORY

“TIME” is selected by default.
1. If POLICY = TIME, Over-Solvers preference for execution time over

accuracy and saving memory. Therefore, algorithms for high

performance are positively selected.

2. If POLICY = ACCURACY, Over-Solvers recalculation solution of

solvers. If false convergence occurs, Over-Solvers continue to

re-execute with more exact convergence test wuntil true

convergence.
3. If POLICY = MEMORY, Over-Solvers set arguments with less memory

usage.

CPU = <value>

29

<value> : entry OMP_NUM THREADS at run-time.
OMP_GET NUM_THREADS is selected by default.

Note) 1 <= <value> <= OMP_GET MAX THREADS ()

RESIDUAL = <value>
<value> : entry require accuracy by real value.
The default value is 1.0D-8.

In case of “POLICY = ACCURACY” is set and false convergence occur,

solver continue to re-execute with more exact convergence test until

true convergence.

MAXMEMORY = <value>
<value> : entry require memory usage in [Gbyte].
The default value is “memfree” in /proc/meminfo (Linux) .
If fails to get property in /proc/meminfo, search and allocate free
memory dynamically.

Note) The maximum limit of MAXMEMORY is 16Gbyte.

MAXTIME = <value>
<value> : entry time tolerance in [sec].
The default value is infinite.

When execution time exceeds time tolerance, computation is stopped.

PRECONDITIONER = <value>
<value> : NO / JACOBI / SSOR / ILUO
ILUO is selected by default. This keyword is wused by only
OpenATI LINEARSOLVE.
1. PRECONDITIONER

NO : No preconditioner

PRECONDITIONER JACOBI :JACOBI

SSOR :SSOR

2
3. PRECONDITIONER
4

PRECONDITIONER ILUO :ILU(0)

30

2.5.3 Argument Details and Error Code of OpenATI_LINEARSOLVE

CALL OpenATI LINEARSOLVE

(1) Argument Details

(N,NNZ, IRP, ICOL, VAL, B, X, INFO)

Argument Type 10 Description
N Integer | INPUT The number of dimension for the matrix. (N>=1)
NNZ Integer | INPUT The number of non-zero elements for the matrix.
IRP(N+1) Integer | INPUT Pointes to first position on each row for the matrix.
Note: Satisfy IRP(1)=1, IRP(N+1)=NNZ+1.
ICOL(NNZ) | Integer | INPUT The row indexes for non-zero elements for the
matrix.
VAL(NNZ) | Double | INPUT The non-zero elements for the matrix.
B(N) Double | INPUT The elements for right hand size vector .
X(N) Double | INPUT/ INPUT:
ouTPUT Set the elements of initial guess for solution vector
x 0.
OUTPUT:
Return the elements of solution vector x.
INFO Integer | OUTPUT Error Code

(2) Error Code

Value Description
0 Normal return.
-100 ”="in POLICY FILE is illegal.
-200 The value of OpenATI_DURMYV_IPARM_1 is illegal
-300 "POLICY” in POLICY FILE is illegal
-310 "PRECONDITIONER” in POLICY FILE is illegal
-400 The value of "MAXMEMORY” in POLICY FILE is greater than free size of
memory
-500 Failing to allocate work area
>0 Error code from Xabclib. GMRES. For more detaile, refer 3.1.3.

31

2.5.4 Argument Details and Error Code of OpenATI_EIGENSOLVE

CALL OpenATI EIGENSOLVE (N,NNZ, IRP, ICOL, VAL, IORDER, NEV,EV,EVEC, INFO)

(1) Argument Details

Argument Type 10 Description
N Integer | INPUT The number of dimension for the matrix. (N>=1)
NNZ Integer | INPUT The number of non-zero elements for the upper
triangle part.
IRP(N+1) Integer | INPUT Pointes to diagonal elements on each row.
Note: Satisfy IRP(1)=1, IRP(N+1)=NNZ+1.
ICOL(NNZ) | Integer | INPUT The row indexes for non-zero elements on the upper
triangle part.
VAL(NNZ) | Double | INPUT The values for non-zero elements on the upper
triangle part.
IORDER Integer | INPUT Option parameter for eigensolve
1 : Compute eigenvalues and eigenvectors from
the raw value, that means including minus.
2 : Compute eigenvalues and eigenvectors from
the absolute value
NEV Integer | INPUT The number of eigenvalues you need.
EVINEV) Double | OUTPUT The eigenvalues. The k-th eigenvalue is set to EV(k).
EVEC Double | OUTPUT The eigenvectors. The k-the eigenvector
(N,NEV) corresponding to the eigenvalue EV(k) is set to the
k-th column.
INFO Integer | OUTPUT Error Code
(2) Error Code
Value Description
0 Normal return.
-100 ”="in POLICY FILE is illegal.
-200 The value of OpenATI_DURMYV_IPARM_1 is illegal
-300 "POLICY” in POLICY FILE is illegal
-310 "PRECONDITIONER” in POLICY FILE is illegal
-400 The value of "MAXMEMORY” in POLICY FILE is greater than free size of

32

memory

-500

Failing to allocate work area

>0

Error code from Xabcelib_ LANCZOS. For more detail, refer 3.1.4.

33

2.5.5 Usage Example

An example of policy file

POLICY = ACCURACY
RESIDUAL = 1.0D-10
CPU = 16
PRECONDITIONER = ILUO

MAXMEMORY =1.0
MAXTIME = 500.0

Before running, set global variables “OPENATI_POLICY” as follow.
(In case of file name is “input_policy.data”)

|OPENATI_POLICY = input_policy.data|

When OpenATI_LINEARSOLVE running is complete, computation result and input
parameters are recorded in “OPENATI_POLICY_REPORT.txt”.
An example of “OPENATI_POLICY_REPORT.txt” as follow.

sxiokk OpenAT| LINEAR SOLVER POLICY REPORT solofofok

Fkkokk 2010.0114 11:30 Fkkokk <{- report date / time
[Environment variables] | input parameters
OPENATI_DEBUG = v

OPENATI_POLICY = . /input_policy. dat
[Policy Definitions]
POLICY = ACCURAGY
SMPs = 16
SOLVER = XABCL IB_GMRES
PRECONDITIONER = [LUO
REQUIREMENT WORKING MEMORY = 16. 0000000000000
<K< Upper Bound 16GBYTE >>>
REQUIREMENT RESIDUAL = 1.000000000000000E-008
REQUIREMENT MAX. TIME = 500. 000000000000

MAX. SUBSPACE SIZE
RUNTIME MEMORY USE

= 14214

= 3.24 [GBYTE]

KRYLOV SUBSPAGE EXPAND AT = 1 MATVEC AT = 1
Initial Gram-Schmidt Strategy = BCGS

====== QPENAT|_L INEARSOLVE SUCCESSFULY ENDED ====== | successfully exit
v
[OPENATI_L INEARSOLVE RESULT] |result report
MATRIX DATA : N= 14214 NNZ= 259688 v
FASTEST MATVEC NO. = 1 <- fastest OpenATI_DURMV case
FINAL KRYLOV SUBSPACE SIZE = 42 <- Msize for convergence
FINAL Gram-Schmidt Strategy = DGKS
2-Norm of RHS = 25.2388589282479 <~ initial norm of RHS
NUMBER OF RETRYED GMRES = 6 <- retried iterations
TOTAL RESTARTS of GMRES 197

RESIDUAL NORM 3. 005885687924543E-010

SET-UP TIME 1.126790046691895E-002 [SEC]
SOLVER TIME 1.32032704353333 [SEC]
TOTAL TIME = 1.33159494400024 [SEC]

34

3. Xabclib : A Numerical Library with Auto-tuning Facility on OpenATLib
3.1 Xabclib_LANCZOS
3.1.1 Overview of the function
Xabclib_ LANCZOS can compute several eigenvalues from the absolutely largest value

for large-scale symmetric matrices in the standard eigenproblem.

3.1.2 Target problem formularization and data format
(1) Target problem

The target problem is the standard eigenproblem A v = A1 v for computing
eigenvalues and eigenvectors on large-scale sparse matrices, where A is a large-scale

sparse matrix, 4 is an eigenvalue, and vis an eigenvector.

(2) Input data format
The data format for input symmetric sparse matrix A is Compressed Row Storage
(CRS) shown in Fig.3-1. Please note that the format is dedicated for symmetric matrices,

hence we do not need lower elements.

\
(1 2 0 3 0 Epintm?itole - 114|6|7 9|10

4 00 5 1agonal elements.

6 0 0 — Row indexes for 112|4|2]|8|3|4 5|5
non-zeroelements.

7 8

Values for 1121al4als5l6l7]l8]9

N o y non-zero elements=.

Fig. 3-1 Compressed Row Storage (CRS) for Symmetric Matrices.

35

3.1.3 The Lanczos Method
The Lanczos method using this library is shown in Fig. 3-2. The algorithm is based on

the algorithm referred by [3].

1. Start with v, =r, 3, :=|r|, ,lock =0
2.For IR=1,2,---,maxrestart Do:
3. Forj=lock+1,---,mDo:

4. Compute v; =1/,

5. r=Av,

6. a;=(rv;)

7. if (j=1) then r=r-ay,

8. if (j2l)then r=r-ayv,-p,v,,
9. r LV, , by modified Gram- Schmidt
10, =[],
11. EndDo

alock+1

ﬂlockﬂ alock+2
12. Eigensolve T=SOS' , T=

i By o]
13. k-th residual estimate with |8, ,|/|®, for k = lock +1,NEV
14. creat Ritz vectors Q, =V,_S,

15. count—up 'new locked' Ritz pair

16. if (lock +'new lock' > NEV) goto exit
17. create new starting Shur vector r =V, S,
18. deflation V, .,
19. EndDo

new locked '+1

=Q.. for L=1"new lock",then lock ="new lock"

Fig. 3-2 The Lanczos Method.

36

3.1.4 Argument Details and Error Code
(1) Argument Details

Argument Type 10 Description

N Integer | INPUT The number of dimension for the matrix. (N>=1)

NNZ Integer | INPUT The number of non-zero elements for the upper triangle
part.

IRP(N+1) Integer | INPUT Pointes to diagonal elements on each row.

Note: Satisfy IRP(1)=1, IRP(N+1)=NNZ+1.

ICOL(NNZ) | Integer | INPUT The row indexes for non-zero elements on the upper
triangle part.

VAL(NNZ) Double | INPUT The values for non-zero elements on the upper triangle
part.

NEV Integer | INPUT The number of eigenvalues you need. The execution time
increases according to the NEV. If NEV>100, the
execution time will be enormous, hence it may not solve in
practical time.

EVINEV) Double | OUTPUT The eigenvalues. The k-th eigenvalue is set to EV(k).

EVEC Double | OUTPUT The eigenvectors. The k-the eigenvector corresponding to

(LDE,NEV) the eigenvalue EV(k) is set to the k-th column.

LDE Integer | INPUT The dimension of EVEC array (LDE < N)

MSIZE Integer | INPUT The restart frequency. Set MSIZE > NEV.

IPARM(10) | Integer | INPUT/ Library patameters for the Lanczos method. (Integer)

OUTPUT |e IPARM(1):INPUT

1 : Compute eigenvalues and eigenbectors from the raw
value, that means including minus.
2 : Compute eigenvalues and eigenbectors from the
absolute value.
® IPARM(2) : INPUT
Set maximum restart frequency for Lanczos method.
® IPARM(3): OUTPUT
Returns the actual restart frequency.
® IPARM(®4)
If IAT(1)=1,
(INPUT)
Set initial restart frequency. If IPARM(4) < NEV,

37

then IPRAM(4)=NEV.

OUTPUT)

Returns the actual restart frequency.
* IPARM(5) -- TPARM(10)

For future extension.

RPARM(10)

Double

INPUT/
OUTPUT

Library patameters for the Lanczos method. (Double)
® RPARM(1):INPUT
Set the convergence test value for eigenvalue and
eigenvector computation. The test norm in this solver is
as follows:
|Ax — x|
2.
® RPARM(2)
(INPUT)
Tolerance maximum execution time in second.
(OUTPUT)
Returns the actual execution time in second.
® RPARM(3) INPUT
The threshold value for MM ratio to judge restart
frequency. It is same as OpenATI_DAFRT RPARM_1
on OpenATI_DAFRT.
® RPARM(4) -- RPARM(10)

For future extension.

IAT(10)

Integer

INPUT/
OUTPUT

Auto-tuning control parameters.

® IfIAT(1)=1, the best restart frequency is set by using
auto-tuning facility.

® TAT(2) INPUT

1 : Perform SpMxV with the best method using
auto-tuning facility.

2 : Perform SpMxV with taking into account avairable
memory space at run-time using auto-tuning
facility.

-11 : Perform SpMxV with Row Decomposition method.
-12 : Perform SpMxV with Normalized NZ method.
-13 : Perform SpMxV with Normalized NZ method with

parallel vector reduction.

38

® TAT(3) :OUTPUT
Retuens the number indicating performed SpMvx
implementation.

® IAT(4) -- TAT(10)

For future extension.

WK Double | WORK Workspace.
(LWK)
LWK Integer | INPUT The size of the double precision workspace WK.
Satisfy
LWK >= (1+MSIZE)*N + 2*MSIZE*MSIZE + 7*MSIZE
+ 5*NEV +2.
IWK Integer | WORK Workspace.
(LIWK)
LIWK Integer | INPUT The size of the integer workspace IWK.
Satisfy
LIWK >= 5*MSIZE + 3.
INFO Integer | OUTPUT Error code.
(2) Error Code
Value Description
0 Normal return.
Less than O | If -1 returns, the value of i-th argument is illegal.
100 Computation was stopped by breakdown for zero vector division.
200 Computation was stopped by abnormal computation of eigenvalues in part of
tridiagonal matrix computation.
300 Computation was stopped by exceeding the maximum number of restart.
400 Computation was stopped by exceeding the execution time tolerance.
500 Computation was stopped by failing to allocate memory in case of IAT(2)=-12,-13.

39

3.2 Xabclib_GMRES
3.2.1 Overview of the function
Xabclib_GMRES can solve large-scale non-symmetric sparse matrices in the linear

equations problem.

3.2.2 Target problem and data format
(1) Target problem

The problem to be solved in the library is the linear equations problem A4 x = b,
where Ais a large-scale sparse matrix, xis a solution vector, and b is a right hand side

vector.

(2) Input data format
The non-symmetric sparse matrix format is Compressed Row Storage (CRS) for

non-symmetric matrices shown in Fig. 3-3.

(1
4

\ Pointers to first row
0 elementa. [1[a]7]a]10]11]
6

0 |=Rovindeseste [TTz[a[1]z[s]3]1]4]5]
non-zere elements.
9 0

Values for ,
0 0 10, [1[2]3]4]5]6]|7[8]09]1c]

o O W

o N o o

(=
e O 0 un N

non-zere elements.

Fig. 3-3 Compressed Row Storage (CRS) for Non-symmetric Matrices.

40

3.2.3 Overview of the algorithm
The algorithm used in this solver is the GMRES method, which is shown in Fig. 3-4.

The algorithm was presented in [4].

1. Compute r, =b— Ax,, B:=|r,||,.and v, =1,/ B
2. Define the (m-+1)xm matrix Hn = {h, | ,Set Hn =0

I<ism+LI< j<m
3.Forj=12,---,mDo:
4. Compute w; = Av,

5. Fori=1:--,jDo:

6 h; = (w;,v;)

£ @; = o = hyy,

8. EndDo

9. by =], 1f hj.;=0Set m:=jand go to 12
10. v, =o;/h;,;
11. EndDo

12. Compute y, the minimizer of “,Bel—ﬁmy

, and x, =%, +V, ¥,

Fig. 3-4 The GMRES Method.

41

3.2.4 Argument Details and Error Code
(1) Argument Details

Argument Type 10 Description
N Integer | INPUT The number of dimension for the matrix. (N>=1)
NNZ Integer | INPUT The number of non-zero elements for the matrix.
IRP(N+1) Integer | INPUT Pointes to first position on each row for the matrix.
Note: Satisfy IRP(1)=1, IRP(N+1)=NNZ+1.
ICOL(NNZ) | Integer | INPUT The row indexes for non-zero elements for the matrix.
VAL(NNZ) Double | INPUT The non-zero elements for the matrix.
B(N) Double | INPUT The elements for right hand size vector b.
X(N) Double | INPUT/ INPUT:
OuTPUT Set the elements of initial guess for solution vector x_0.
OUTPUT:

Return the elements of solution vector x.

KIND_PRE | Integer | INPUT Set preconditioner kinds.

COND 1 : None.
2 : Jacobi.
3 : SSOR.
4 : ILU(0).
PRECOND | Double | INPUT/ |INPUT:
(NPRE) OUTPUT |e If IPCPARM(1)=1, then

none to be set.
e If IPCPARM(1)=2, then

set preconditioner kind of M already specified.

OUTPUT:
® If TPCPARM(1)=1, then

the preconditioner kind of M returns.
® If TPCPARM(1)=2, then

no modification.

NPRE Integer | INPUT The size of PRECOND array.
If KIND_PRECOND is 2, then NPRE=0.
If KIND_PRECOND is 3 or 4, then NPRE=N.

IPCPARM | Integer | INPUT Preconditioner Parameters (Integer)
(10) ® [PCPARM(1)

42

1 : Compute Preconditioner M.
2 : Use precondition M inputed by user.
® IPCPARM(2) -- IPCPARM(10)

For future extension.

RPCPARM | Double | INPUT Preconditioner parameters (Double)
(10) ® RPCPARM()

If KIND_PRECOND=3, then

Set parameter o for SSOR preconditioner.
If KIND_PRECOND=4, then
Set threathold value to judge breakdown when
computing ILU(0) preconditioner.

® RPCPARM(2) -- RPCPARM(10)

For future extension.

MSIZE Integer | INPUT Restart Frequency.
IGRPARM | Integer | INPUT/ Library parameters for GMRES Method. (Integer)
(10) OUTPUT |e IGRPARM():INPUT

Set maximum restart frequency for GMRES method.
® IGRPARM(2): OUTPUT
Final restart frequency returns.
® IGRPARM(®)
If TAT(1)=1,
(INPUT)
Set initial restart frequency. If initial value is not
positive, then it’s set 2.
(OUTPUT)
Returnss the actual restart frequency.
® IGRPARM(4) -- IGRPARM(10)

For future extension.

RGRPARM | Double | INPUT Library parameters for GMRES Method. (Double)
(10) ® RGRPARM() :INPUT
Set the threthold value of convergence test. The

convergence test is done with the following formula:

"M*@—A@"
[M~]

® RGRPARM(2)

43

(INPUT)
Set maximum tolerance execution time in second.
(OUTPUT)
Returns the actual execution time in second.
® RGRPARM(3) :INPUT
Set threthold value of MM ratio to judge restart
frequency. It is same as OpenATI_DAFRT RPARM_1
on OpenATI_DAFRT.
® RGPARAM(4) :OUTPUT
Returns the residual value.
® RGRPARMI(5) -- RGRPARM(10)

For future extension.

IAT(10)

Integer

INPUT/
OUTPUT

Auto-tuning parameters.
® If IAT(1)=1, set the best restart frequency with
auto-tuning facility.
® TAT(2) : INPUT
1: set the best implementation of SpMxV with
auto-tuning facility.
-11 : Perform SpMxV with Row Decomposition Method.
-12 : Perform SpMxV with Normalized NZ Method.
-13 : Perform SpMxV with BSS.
-21 : Perform SpMxV with Original Segmented Scan.
® TAT(3) :OUTPUT
Retuens the number indicating performed SpMvx
implementation.
® TAT(4) -- TAT(10)

For future extension.

WK
(LWK)

Double

WORK

Workspace.

LWK

Integer

INPUT

The size of the workspace for double precision WK.

Satisfy

LWK >= (MSIZE+2)*N + (MSIZE+1)*(MSIZE+1)
+ (N-1)/2+1.

INFO

Integer

OUTPUT

Error code.

44

(2) Error Code

Value Description
0 Normal return.
Less than O | If -1 returns, the value of i-th argument is illegal.
100 Computation was stopped by failing to make preconditioner.
200 Computation was stopped by breakdown.
300 Computation was stopped by that the value of OpenATI_DAFRT is illegal.
400 Computation was stopped by exceeding the execution time tolerance.
500 Computation was stopped by exceeding the maximum number of restart.
600 Computation was stopped by failing to allocate memory in case of IAT(2)=-12,-13.
700 Computation was stopped by the value of LUINF exceeds Integer max in case of
ICASE=21.

45

4. References

[1] T. Sakurai, K. Naono, M. Egi, M. Igai, and H. Kidachi: Proposal on Runtime
Parameter Auto Tuning Approach for Restarted Lanczos Method, IPSJ SIG Notes,
2007-HPC-111, pp.173-178, (2007)(in Japanese).

[2] M. Kudo, H. Kuroda, T. Katagiri, and Y. Kanada: The Effect of Optimal Algorithm
Selection of Parallel Sparse Matrix-Vector Multiplication, IPSJ SIG Notes,
2002-ARC-147, pp.151-156 (2002)(in Japanese).

[3]V. Hernandez, J. E. Roman, and A. Tomas: Evaluation of Several Variants of
Explicitly Restarted Lanczos Eigensolvers and Their Parallel Implementations,
High Performance Computing for Computational Science - VECPAR 2006,
pp.403-416 (2007).

[4] Y. Saad: Iterative methods for sparse linear systems, SIAM, (1996).

[5]Guy E. Blelloch, Michael A. Heroux, and Marco Zagha: Segmented Operations for
Sparse Matrix Computation on Vector Multiprocessors, Carnegie Mellon University,
Pittsburgh, PA, (1993).

[6] K. Naono, M. Igai and H. Kidachi: Performance Evaluation of the Gram-Schmidt
Orthogonalization Library with Numerical Policy Interface on Heterogeneous
Platforms, IPSJ Tran. on Advanced computing systems, 46(SIG_12(ACS_11)),
pp.279-288 (2005)(in Japanese).

[7]Daniel, J., Gragg, W.B., Kaufman, L. And Stewart, G.W.: Reorthogonalization and
stable algorithms for updating the Gram-Schmidt QR factorization, Math. of
Computation, Vol.30, pp.772-795 (1976).

[8] K. Naono, M. Igai and H. Kidachi: Performance Evaluation of the Gram-Schmidt
Orthogonalization Library with Numerical Policy Interface on Heterogeneous
Platforms, Transaction on Advanced Computing Systems, Vol. 46 No. SIG12 (ACS11),
pp. 279-288 (2005) (in Japanese).

46

