OpenATLib and Xabclib Developer's Manual for Version Beta

Information Technology Center, The University of Tokyo and Central Research Laboratory, Hitachi Ltd.

January 29, 2010

DISCLAIMER

This software, OpenATLib and Xabclib, is provided by the copyright holders and contributors, Information Technology Center, The University of Tokyo and Central Research Laboratory, Hitachi Ltd., "AS IS" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright owner or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence of otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

1. Overview

In this manual, functions for numerical library developers in OpenATLib and Xabclib are explained. Fig. 1-1 and Fig. 1-2 show the components of function on Xabclib and Xabclib.

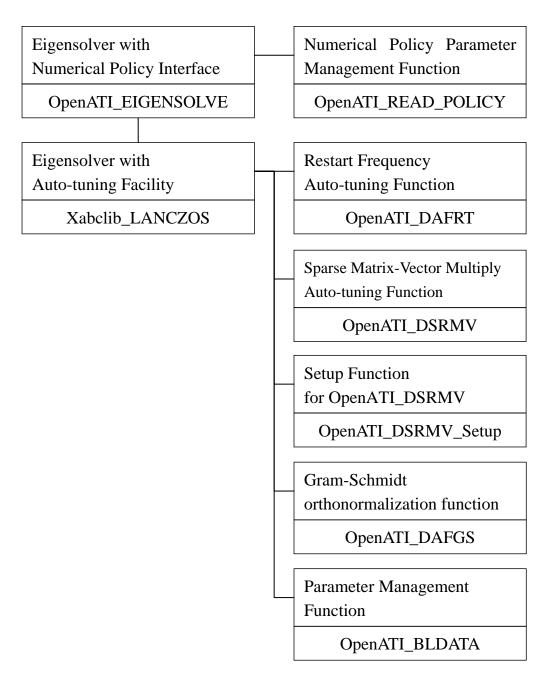


Fig. 1-1 Components of Function on Eigensolver.

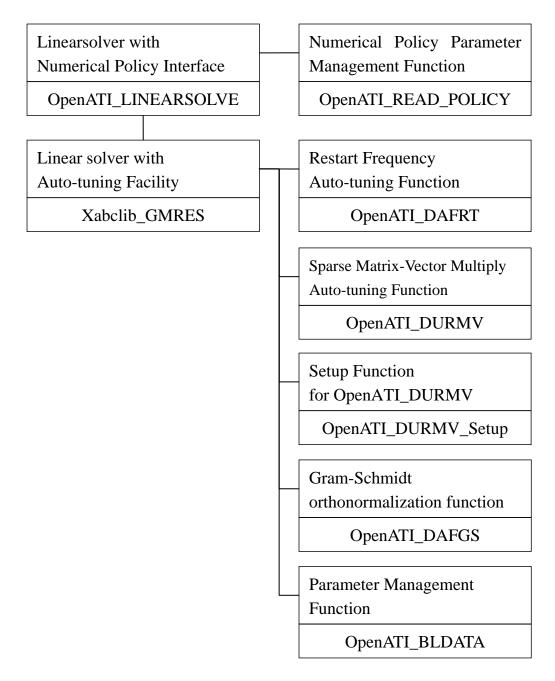


Fig. 1-2 Components of Function on Linearsolver.

- 2. OpenATLib : A Common Auto-tuning Interface Library
- 2.1 Function of OpenATLib and Its Usage

In this section, library for functions and specification on a common auto-tuning interface, named OpenATLib, is explained. OpenATLib is an Application Programming Interface (API) to supply auto-tuning facility on arbitrary matrix computation libraries. For example, estimation function for the best values on algorithmic parameters, and best implementation for sparse matrix-vector multiplication (SpMxV).

(1) The function

Table 2-1 shows auto-tuning functions providing OpenATLib.

Function Name	Description
OpenATI_DAFRT	Judge increment for restart frequency on
	Krylov subspace.
OpenATI_DSRMV	Judge the best implementation for double
	precision symmetric SpMxV on CRS format.
OpenATI_DURMV	Judge the best implementation for double
	precision non-symmetric SpMxV on CRS
	format.
OpenATI_DSRMV_Setup	Setup function for OpenATI_DSRMV.
OpenATI_DURMV_Setup	Setup function for OpenATI_DURMV.
OpenATI_DAFGS	Gram-Schmidt orthonormalization function
	with 4 implementations.
OpenATI_BLDATA	Set default parameters.
	(Block data format for Fortran.)
OpenATI_LINEARSOLVE	Over-LinearSolver with numerical policy
	interface.
OpenATI_EIGENSOLVE	Over-EigenSolver with numerical policy
	interface.

 Table 2-1
 Auto-tuning Function Providing OpenATLib

The functions provided OpenATLib are classified for the following five categories:

- a) Computation Function (Ex. SpMxV)
- b) Auxiliary Function (Ex. Specified parameter settings.)
- c) Management Function (Ex. OpenATI_BLDATA)
- d) Setup Function (Ex. OpenATI_DSRMV_Setup)

e) Over-Solver (Ex. OpenATI_LINEARSOLVE)

For a) and b) functions, the function names are named by the manner on Table 2-1, following "OpenATI_" .

Table 2-2	Nomenclature of OpenATLib functions		
First Character	The character shows data type.		
	S : Single Precision		
	D : Double Precision		
Second and Third	If the function is auxiliary, it comes "AF".		
Characters	If the function is computation, it comes matrix kinds		
	in the second character, and matrix storage format		
	in the third character.		
	• The second character:		
	S : Symmetric.		
	U : Non-symmetric.		
	D : Diagonal.		
	T : Tridiagonal.		
	• The third character:		
	R : CRS Format.		
	C : CCS Format.		
Fourth and Fifth	Process Kinds.		
Characters	MV: Matrix-vector multiplication.		
	RT: Restart frequency.		

Table 2-2 Nomenclature of OpenATLib functions

(2) Include file "OpenAT.inc"

If you include OpenAT.inc in your program, you can refer and update the following system global variables without definition. After the values are updated, all inner parameters on each OpenATI function are set to the updated values. See each specification for the details of system global variables.

(a) OpenATI_DAFRT_IPARM_1

A flag to perform auto-tuning based on MM ratio.

- (b) OpenATI_DAFRT_RPARM_1 The MM ratio.
- (c) OpenATI_DSRMV_IPARM_1

A search area parameter for symmetric SpMxV.

(d) OpenATI_DURMV_IPARM_1

A search area parameter for non-symmetric SpMxV.

(e) OpenATI_DURMV_IPARM_2

The number of iteration to evaluate non-symmetric SpMxV.

(f) OpenATI_DAFGS_IPARAM_1

The implementation of Gram-Schmidt orthonormalization.

(3) How to use the OpenATLib.

If you want to develop own library using OpenATLib, you should follow the following processes.

- 1. Put the include file of "OpenAT.inc", and static library of "libOpenAT.a" to current directory.
- 2. Include "OpenAT.inc" in program on own library source code, like Fig. 2-1.
- 3. Call target functions of OpenATLib on own library source code.
- 4. Describe makefile to link "libOpenAT.a".

INCLUDE "OpenAT.inc"

Fig. 2-1 An Example of OpenATLib including.

2.2 OpenATI_DAFRT

2.2.1 Overview of the function

To perform Krylov subspace method, for example, Lanczos method for eigensolvers computation and GMRES method for linear equation solvers, they need to specify the dimension of the inner Krylov subspace to fix available memory space. If the iteration number is over for the fixed dimension, new computation is done with the current calculated approximation as initial vector to make new Krylov subspace. This process is called "restart", and the number of iterations is called "restart frequency". If the restart frequency is too small, it causes stagnation of reduction for residual vector, which is calculated by real solution and approximation vectors, then the number of iterations is increased. On the other hand, if the restart frequency is too big, it causes heave computation to make big Krylov subspaces, hence the execution time is very increased. The best frequency depends on input sparse matrix numerical condition, and it is very tough to estimate the best frequency without execution. Hence in the library point of view, we need on the fly, namely run-time, auto-tuning facility.

OpenATI_DAFRT enables us to judge the incensement of frequency based on the current information of Krylov subspace.

2.2.2 Overview of the auto-tuning method

The previous estimation for the best restart frequency is difficult; it can detect stagnation based on the run-time history of residuals. The method is proposed in [1].

The norm of the stagnation is defined by the value that maximum value divided by minimal vale from t-th time to s-th time. The values called "Ratio of Max-Min in residual". Hereafter, we describe the ratio "**MM ratio**" for simplification.

The MM ratio to past *t* th time, namely Ri(s,t), can be described with *i* th residual r_i as follows:

$$R_{i}(s,t) = \frac{\max_{z} \{r_{i}(z); z = s - t + 1, \dots, s\}}{\min_{z} \{r_{i}(z); z = s - t + 1, \dots, s\}}.$$

If restart frequency is big enough, the residual tends to reduce bigly, hence MM ratio is going to be big. If restart frequency is small, it tends to cause stagnation, hence MM ratio is going to be small. Hence, we can control restart frequency at run-time monitor for the MM ratio. If the MM ratio is going to be small to a fixed value at run-time, the frequency should be increased.

2.2.3 Argument Details and Error Code

Argument	Туре	IO	Description
NSAMP	Integer	INPUT	The number of sampling points.
SAMP	Double	INPUT	The values of sampling points.
(NSAMP)			
IRT	Integer	OUTPUT	0 : Do not need to increase restart frequency.
			1 : Need to increase restart frequency.
INFO	Integer	OUTPUT	Error code.

(1) Argument Details

(2) Global Variables Defined on "OpenAT.inc"

(2) Giosal Vallasies Defined on Open II.ne					
Variable Name	Туре	Initial	Description		
		Value			
OpenATI_DAFRT_IPARM_1	Integer	1	1 : Judge incensement of restart		
			frequency based on MM ratio.		
OpenATI_DAFRT_RPARM_1	Double	100.0	Threshold value for MM ratio.		

(3) Error Code

Value	Description
0	Normal return.

2.2.4 Usage Example

Judgment of restart frequency is per 5 iterations. If it is needed to increase, the frequency is increased by stridden 1. In this case, you can write the code like Fig. 2-2.

```
//Parameter Definition
INCLUDE "OpenAT.inc" // Include OpenAT.inc
MSIZE=1
                       // Initial restart frequency.
I=5
                       // Judgment frequency.
                                \sim omission \sim
IF RSDID < TOL RETURN
                              // Convergence Test
SAMP (K)=RSDID
                     //Set residual to SAMP(K).
IF (mod (K, I) .eq. 0) THEN //Call DAFRT per I times.
        IRT=0
        CALL OpenATI_ DAFRT (I, SAMP, IRT, INFO)
        IF IRT= 1 MSIZE=MSIZE+1
                                      //Increase restart frequency.
        K=0
END IF
K=K+1
                               \sim omission \sim
```

Fig. 2-2 An Example of OpenATI_DAFRT description.

2.3 OpenATI_DSRMV and OpenATI_DURMV, OpenATI_DSRMV_Setup, OpenATI_DURMV_Setup

2.3.1 Overview of the function

Sparse matrix-vector multiplication (SpMxV) is crucial function and widely-used in many iterative methods. Its execution time directly affects total execution time in many cases. There are many implementations to perform SpMxV. The best implementation depends on computer environment and numerical characteristics of input sparse matrix. It is hence difficult to fix the best method. We need auto-tuning method at run-time to adapt user's computer environment and matrices.

OpenATI_DSRMV is designed for double symmetric SpMxV, and OpenATI_DURMV is designed for double non-symmetric SpMxV auto-tuning APIs for their implementations at run-time.

2.3.2 Overview of auto-tuning method

In this function, the API surveys all candidates of SpMxV implementations in the first iteration time, then select the best implementation after that. This method was proposed by [2].

The following several implementations are supplied for OpenATI_DSRMV(3 kinds) and OpenATI_DURMV(4 kinds) in version beta.

OpenATI_DSRMV

- S1) Row Decomposition Method.
- S2) Normalized NZ Method.
- S3) Normalized NZ Method, with vector reduction parallelization.

• OpenATI_DURMV

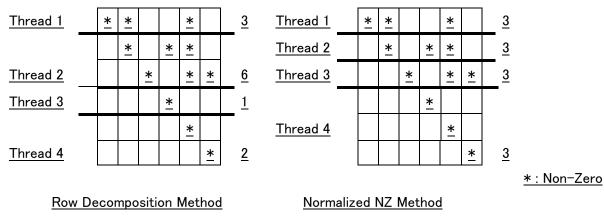
- U1) Row Decomposition Method.
- U2) Normalized NZ Method (for scalar multi-core processors).
- U3) BSS (Branchless Segmented Scan) (for scalar multi-core processors).
- U4) Original Segmented Scan (for vector processors).

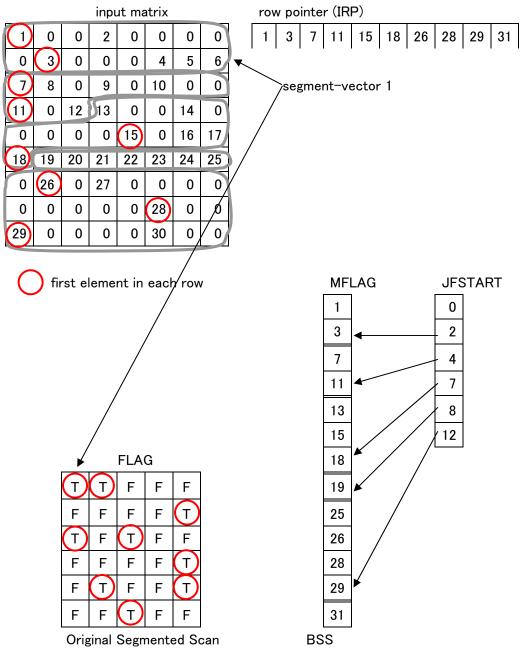
[Row Decomposition Method and Normalized NZ Method]

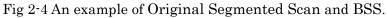
- Row Decomposition Method Input Matrix is divided into the number of threads blocks for balancing the number of row processed by each thread.
- Normalized NZ Method

Input Matrix is divided into the number of threads blocks for normalizing the number of non-zero element processed by each thread.

Figure 2-3 shows an example of Row Decomposition Method and Normalized NZ Method in case of 6 dimension matrix processed by 4 threads.




Fig 2-3 An example of Row Decomposition Method and Normalized NZ Method


[Original Segmented Scan method and BSS method]

Original Segmented Scan[5] is designed for sparse matrix multiplication on vector multiprocessors. In this method, input matrix is divided into fixed length of Non-Zero element group. These Non-Zero element group are named segment-vector, In a code of Original Segmented Scan, innermost loop has fixed length of loop and mask process with FLAG representing the beginning of row. (Fig 2-4 shows an example of segment-vector of length 6 processed by 5 threads).

BSS is the method modified for scalar multi-core system by removing IF operator for mask process in innermost loop. In this method, row pointer array in CSR format is extended for segment-vector (In Fig2-4, IRP is expanded MFLAG).

[example]

If you want to specify SpMxV implementation of OpenATI_DSRMV or OpenATI_DURMV, you need to run setup function before call OpenATI_DSRMV or OpenATI_DURMV.

OpenATI_DSRMV_Setup

- (S1) No necessary to run setup function.
- (S2) Fix the groups of rows processed by each thread for normalized non-zero elements.
- (S3) Fix the groups of rows processed by each thread for normalized non-zero elements, and the start and end point of reduction part of each thread.

OpenATI_DURMV_Setup

- (U1) No necessary to run setup function.
- (U2) Fix the groups of rows processed by each thread for normalize non-zero elements.
- (U3) Set array of MFLAG and JFSTART for BSS.
- (U4) Set array of FALG for Original Segmented Scan

Argument	Type	ΙΟ	Description
Ν	Integer	INPUT	The number of dimension for the matrix. $(N \ge 1)$
NNZ	Integer	INPUT	The number of non-zero elements for the matrix.
IRP(N+1)	Integer	INPUT	Pointers to first elements on each row for the
			matrix.
ICOL(NNZ)	Integer	INPUT	The non-zero row indexes for the matrix.
ICASE	Integer	INPUT	Set the number corresponding implementation of
			SpMxV in OpenATI_DSRMV.
			11: No necessary to run this function.
			12: Create information for Normalized NZ
			Method.
			13: Create information for Normalized NZ
			Method with vector reduction
			parallelization
SINF	Double	OUTPUT	If ICASE=11
(LSINF)			No returns.
			If ICASE=12,13
			Returns the groups of rows processed each
			thread for OpenATI_DSRMV.
LSINF	Integer	INPUT	The size of SINF
			ICASE=11:
			$LSINF \ge 0$
			ICASE=12:
			$LSINF \ge int(0.5*NUM_SMP)+1$
			ICASE=13:
			LSINF >= N+NUM_SMP+3
NUM_SMP	Integer	INPUT	Set the number of threads to the argument.
INFO	Integer	OUTPUT	Error Code

2.3.3 Argument Details and Error Code of OpenATI_DSRMV_Setup (1) Argument Details

(2)Error Code

Value	Description	
0	Successful exit.	
100	Invalid ICASE value is inputted.	

200	Invalid LSINF value is inputted. (ICASE=12 or 13)
-----	---

Argument	Туре	IO	Description
Ν	Integer	INPUT	The number of dimension for the matrix. $(N>=1)$
NNZ	Integer	INPUT	The number of non-zero elements for the matrix.
IRP(N+1)	Integer	INPUT	Pointers to first elements on each row for the matrix.
ICASE	Integer	INPUT	 Set the number corresponding implementation of SpMxV in OpenATI_DURMV. 11: No necessary to run this function. 12: Create information for Normalized NZ Method. 13: Create information for BSS. 21: Create information for Original Segmented Scan
UINF (LUINF)	Double	OUTPUT	ICASE=11: No returns. ICASE=12,13,21: Returns the groups of rows processed each thread or information array for segmented scan.
LUINF	Integer	INPUT	The size of UINF ICASE=11: LUINF >= 0 ICASE=12: LUINF >= int(0.5*NUM_SMP)+1 ICASE=13: LUINF >= int(1.5*N)+546 ICASE=21: LUINF >= int(1.125*NNZ)+273
NUM_SMP	Integer	INPUT	Set the number of threads to the argument.
INFO	Integer	OUTPUT	Error Code

2.3.4 Argument Details and Error Code of OpenATI_DURMV_Setup (1) Argument Details

(2)Error Code

Value	Description	
0	Successful exit.	
100	Invalid ICASE value.	
200	LUINF value exceeds upper limit of Integer.	
300	Invalid LUINF value (ICASE=12,13,21).	

Argument	Туре	IO	Description
Ν	Integer	INPUT	The number of dimension for the matrix. (N>=1)
NNZ	Integer	INPUT	The number of non-zero elements for the matrix.
IRP(N+1)	Integer	INPUT	Pointers to diagonal elements on each row for the
			matrix.
ICOL(NNZ)	Integer	INPUT	The non-zero row indexes for the matrix.
VAL(NNZ)	Double	INPUT	The non-zero elements for the matrix.
X(N)	Double	INPUT	Right hand side vector elements.
Y(N)	Double	OUTPUT	Solution vector elements for SpMxV.
ICASE	Integer	INPUT/	If OpenATI_DSRMV_IPARM_1=1, then set the
		OUTPUT	number of implementations.
			If OpenATI_DSRMV_IPARM_1=2 or 3, the best
			number of implementations returns.
			The numbers of implementations are:
			11: Row Decomposition Method.
			12: Normalized NZ Method.
			13: Normalized NZ Method, with vector reduction
			parallelization.
NUM_SMP	Integer	INPUT	If OpenATI_DSRMV_IPARM_1=1 and ICASE=13,
			or OpenATI_DSRMV_IPARM_1=3, then set the
			number of threads to the argument.
WK(N,	Double	WORK	If OpenATI_DSRMV_IPARM_1=1 and ICASE=13,
NUM_SMP)			or OpenATI_DSRMV_IPARM_1=3, then set
			workspace to the argument.
SINF	Double	INPUT/	If OpenATI_DSRMV_IPARM_1=1
(LSINF)		OUTPUT	(INPUT)
			ICASE=11 : Not necessary to set.
			ICASE=12,13 : Set SINF retuned by
			OpenATI_DSRMV_Setup.
			If OpenATI_DSRMV_IPARM_1=2,3
			(INPUT)
			Not necessary to set.

 $2.3.5\,\mathrm{Argument}$ Details and Error Code for <code>OpenATI_DSRMV</code>

			(OUTPUT)
			Returns setup information for best
			implementation.
LSINF	Integer	INPUT	The size of SINF
			If OpenATI_DSRMV_IPARM_1=1
			ICASE=11:
			$LSINF \ge 0$
			ICASE=12:
			$LSINF \ge int(0.5*NUM_SMP)+1$
			ICASE=13:
			LSINF >= N+NUM_DMP+3
			If OpenATI_DSRMV_IPARM_1=2
			$LSINF \ge int(0.5*NUM_SMP)+1$
			If OpenATI_DSRMV_IPARM_1=3
			LSINF >= N+NUM_SMP+3
INFO	Integer	OUTPUT	Error code.

Variable Name	Туре	Initial	Description
		Value	
OpenATI_DSRMV_IPARM_1	Integer	1	1: Perform SpMxV specified by ICASE.
			2 : Perform SpMxV to judge the best
			methods between two methods,
			except for reduction parallel
			implementation.
			3 : Perform SpMxV to judge the best
			method among three methods. Note
			that workspace according to the
			number of threads is needed.

(2) Global Variables Defined On "OpenAT.inc"

(3) Error Code

Value	Description
0	Successful exit.
100	The value of ICASE is illegal.
	(If OpenATI_DSRMV_IPARM_1=1.)
200	The value of OpenATI_DSRMV_IPARM_1 is illegal.

Argument	Туре	IO	Description
Ν	Integer	INPUT	The number of dimension for the matrix. $(N>=1)$
NNZ	Integer	INPUT	The number of non-zero elements for the matrix.
IRP(N+1)	Integer	INPUT	Pointers to first elements on each row for the
			matrix.
ICOL(NNZ)	Integer	INPUT	The non-zero row indexes for the matrix.
VAL(NNZ)	Double	INPUT	The non-zero elements for the matrix.
X(N)	Double	INPUT	Right hand side vector elements.
Y(N)	Double	OUTPUT	Results vector elements for SpMxV.
ICASE	Integer	INPUT/	If OpenATI_DURMV_IPARM_1=1, then set the
		OUTPUT	number of implementations.
			If OpenATI_DURMV_IPARM_1=2 or 3, the best
			number of implementations returns.
			The numbers of implementations are:
			11: Row Decomposition Method.
			12: Normalized NZ Method (for scalar multi-core
			processors).
			13: BSS (for scalar multi-core processors).
			21: Original Segmented Scan (for vector
			processors).
UINF	Double	INPUT/	If OpenATI_DURMV_IPARM_1=1
(LUINF)		OUTPUT	(INPUT)
			ICASE=11 : Not necessary to set
			ICASE=12,13,21 :Set UINF returned by
			OpenATI_DURMV_Setup.
			If OpenATI_DURMV_IPARM_1=2,3
			(INPUT)
			Not necessary to set.
			(OUTPUT)
			Returns setup information for bes
			implementation.
LUINF	Integer	INPUT	The size of UINF

2.3.6 Argument Details and Error Code for OpenATI_DURMV(1) Argument Details

			If OpenATI_DURMV_IPARM_1=1
			ICASE=11:
			$LUINF \ge 0$
			ICASE=12:
			$LUINF \ge int(0.5*NUM_SMP)+1$
			ICASE=13:
			$LUINF \ge int(1.5*N)+546$
			ICASE=21:
			LUINF >= int(1.125*NNZ)+273
			If OpenATI_DURMV_IPARM_1=2.
			$LUINF \ge int(0.5*NUM_SMP)+1$
			If OpenATI_DURMV_IPARM_1=3,
			$LUINF \ge int(1.5*N)+546$
NUM_SMP	Integer	INPUT	Set the number of threads to the argument.
INFO	Integer	OUTPUT	Error Code.

(2) Global Variables Defined on "Oper	hAT.inc".
---------------------------------------	-----------

Variable Name	Туре	Initial	Description
		Value	
OpenATI_DURMV_IPARM_1	Integer	1	1 : Perform SpMxV specified by
			ICASE.
			2 and 3 : Perform SpMxV to judge the
			best method among three
			implementations.
OpenATI_DURMV_IPARM_2	Integer	1	The number of iterations for
			non-symmetric SpMxV in performance
			evaluation.

(3)Error Code

Value	Description
0	Successful exit.
100	The value of ICASE is illegal.
	(If OpenATI_DURMV_IPARM_1=1.)
200	The value of OpenATI_DURMV_IPARM_1 is illegal.

2.3.5 Usage Example

Search the best implementation of SpMxV in the first iteration time, then the best implementation is used after that based on the run-time searching. To implement this, see the code of Fig. 2-5.

```
//Parameter definition.
INCLUDE "OpenAT.inc"
                               // Include OpenAT.inc
OpenATI_DSRMV_IPARM_1=3
                               //Initialize DSRMV parameter.
ICASE=0
                               //Initialize DSRMV parameter.
LSINF= N+NUM_SMP+3
ALLOCATE(SINF(LSINF))
                               \sim omission \sim
//The first SpMxV.
CALL OpenATI_DSRMV (N, NNZ, IRP, ICOL, VAL, X, Y, ICASE,
                           NUM_SMP, WK, SINF, LSINF, INFO)
OpenATI_DSRMV_IPARM_1=1 //Hereafter, we select the best one.
                               \sim omission \sim
// SpMxV after run-time searching.
// We can use the best implantation based on previous information.
CALL OpenATI_DSRMV (N, NNZ, IRP, ICOL, VAL, X, Y, ICASE,
                           NUM_SMP, WK, SINF, LSINF, INFO)
                                \sim omission \sim
```

Fig. 2-5 $\,$ An Example of OpenATI_DSRMV Description.

If you want to specify SpMxV implementation in OpenATI_DSRMV, implement the code like Fig.2-6.

// Parameter definition. INCLUDE "OpenAT.inc" // Include OpenAT.inc OpenATI_DSRMV_IPARM_1=1 // Initialize DSRMV parameter. ICASE = 13// Initialize DSRMV parameter. \sim omission \sim // The first SpMxV. LSINF=N+NUM_SMP+3 //Allocate memory for setup ALLOCATE(SINF(LSINF)) CALL OpenATI_DSRMV_Setup(N,NNZ,IRP,ICOL,ICASE, SINF, LSINF, NUM_SMP,INFO) CALL OpenATI_DSRMV (N,NNZ,IRP,ICOL,VAL,X,Y,ICASE, NUM_SMP, WK, SINF, LSINF, INFO) \sim omission \sim // SpMxV after run-time searching. // We can use the best implantation based on previous information. CALL OpenATI_ DSRMV (N,NNZ,IRP,ICOL,VAL,VEC,JPARM, IPARM, RPARM, SINF, LSINF, INFO) $\sim\,$ omission $\,\sim\,$

Fig.2-6 An example of OpenATI_DSRMV Description with specified SpMxV implementation.

2.4 OpenATI_DAFGS

2.4.1 Overview of the function

Vector Reorthonormalization spends a lot of CPU time in many Krylov Subspace methods. Gram-Schmidt Reorthonormalization method is typcal Reorthonormalization method. There are many implementations to perform Gram-Schmidt method, and trade-offs must be made between computational complexity and accracy. Hence, It is difficult to fix the best implementation.

OpenATI_DAFGS is API that supplies selectable from 4 kinds Gram-Schmidt Reorthonormalization implementation.

2.4.2 Overview of Reorthonormalization method

In this function, the API has 4 kinds Gram-Schmidt Reorthonormalization method. Selected method is indicated by value of Global Variables 'OpenATI_DAFGS_IPARM_1'. By default, Modified Gram-Schmidt method is selected.

(1) Classical Gram-Schmidt method (CGS)

When Krylov Subspace size is large, accuracy of reorthonormalization is lowering. Acceleration performance by parallelization is excellent.

(2) DGKS method

This method supplies improved accuracy by running CGS 2 times. DGKS method computational complexity needs twice as many as CGS' one.

(3) Modified Gram-Schmidt method (MGS)

MGS is most popular Gram-Schmidt method. This method is most effective performance and accuracy.

(4) Blocked Classical Gram-Schmidt method (BCGS)

BCGS method is orthonormalized by intra-block with CGS, by inter-block with MGS. Block length is 4.

2.4.3 Argument Details and Error Code

(I) Arguineir			
Argument	Type	IO	Description
NORMALF	Integer	INPUT	Normalization of Output vector
LG			0: not normalized
			1 : normalized
Ν	Integer	INPUT	Vector length (N>=1)
X(N)	Double	INPUT	Vector for normalization
Q(LQ,MM)	Double	INPUT	Orthonormalized vectors Q(1:N,MM)
LQ	Integer	INPUT	Leading Dimension of Q
MM	Integer	INPUT	The number of vector of Q
HR(MM)	Double	OUTPUT	Inner product X by Q(1:N,M)
IDGKS	Integer	OUTPUT	Iterative refinement of DGKS
			0: no Iterative refinement
			1 : Iterative refinement

(2) Global Variables De	efined on "OpenAT.inc"
-------------------------	------------------------

(2) Giobal Vallables Defined on OpenAr.inc				
Variable Name	Туре	Initial	Description	
		Value		
OpenATI_DAFGS_IPARM_1	Integer	2	0 : Classical Gram-Schmidt	
			1 : DGKS	
			2 : Modified Gram-Schmidt	
			3 : Blocked Gram-Schmidt	

2.5 OpenATI_LINEARSOLVE and OpenATI_EIGENSOLVE : Sparse iterative solvers with Numerical policy

2.5.1 Overview of the function

Numerical policy is requirement and priority of memory, CPU time, accuracy and others specified by library user. OpenATI supplies OpenATI_LINEARSOLVE is designed for unsymmetric liner problem, and OpenATI_EIGENSOLVE is designed for symmetric eigenvalue problem as sparse iterative solvers with numerical policy.

OpenATI_LINEARSOLVE and OpenATI_EIGENSOLVE are Over-Solvers that call Xabclib and set optimized arguments automatically on user's numerical policy.

2.5.2 Overview of numerical policy

If you want to use Over-Solvers, you make numerical policy file with following format, and input numerical policy file path into global variable "OPENATI_POLICY".

Policy file's format is as follow.

<keyword> = <value>

There is POLICY/CPU/RESIDUAL/MAXMEMORY/MAXTIME/PRECONDITIONER as configurable keywords. Unregistered <keyword> in policy file is inputted the default value. The explanation of all <keyword> is as follow.

```
POLICY = <value>
```

<value> : TIME / ACCURACY / MEMORY

"TIME" is selected by default.

- If POLICY = TIME, Over-Solvers preference for execution time over accuracy and saving memory. Therefore, algorithms for high performance are positively selected.
- 2. If POLICY = ACCURACY, Over-Solvers recalculation solution of solvers. If false convergence occurs, Over-Solvers continue to re-execute with more exact convergence test until true convergence.
- 3. If POLICY = MEMORY, Over-Solvers set arguments with less memory usage.

CPU = <value>

```
<value> : entry OMP_NUM_THREADS at run-time.
OMP GET NUM THREADS is selected by default.
Note) 1 <= <value> <= OMP_GET_MAX_THREADS()
```

```
RESIDUAL = <value>
```

```
<value> : entry require accuracy by real value.
The default value is 1.0D-8.
In case of "POLICY = ACCURACY" is set and false convergence occur,
solver continue to re-execute with more exact convergence test until
true convergence.
```

```
MAXMEMORY = <value>
   <value> : entry require memory usage in [Gbyte].
   The default value is "memfree" in /proc/meminfo (Linux).
   If fails to get property in /proc/meminfo, search and allocate free
   memory dynamically.
```

Note) The maximum limit of MAXMEMORY is 16Gbyte.

MAXTIME = <value>

```
<value> : entry time tolerance in [sec].
The default value is infinite.
When execution time exceeds time tolerance, computation is stopped.
```

```
PRECONDITIONER = <value>
   <value> : NO / JACOBI / SSOR / ILUO
   ILUO is selected by default. This keyword is used by only
OpenATI_LINEARSOLVE.
   1. PRECONDITIONER = NO : No preconditioner
   2. PRECONDITIONER = JACOBI : JACOBI
   3. PRECONDITIONER = SSOR :SSOR
```

4. PRECONDITIONER = ILU0 : ILU(0)

2.5.3 Argument Details and Error Code of OpenATI_LINEARSOLVE

CALL OpenATI_LINEARSOLVE (N,NNZ,IRP,ICOL,VAL,B,X,INFO)

Argument	Туре	IO	Description
N	Integer	INPUT	The number of dimension for the matrix. (N>=1)
NNZ	Integer	INPUT	The number of non-zero elements for the matrix.
IRP(N+1)	Integer	INPUT	Pointes to first position on each row for the matrix.
			Note: Satisfy IRP(1)=1, IRP(N+1)=NNZ+1.
ICOL(NNZ)	Integer	INPUT	The row indexes for non-zero elements for the
			matrix.
VAL(NNZ)	Double	INPUT	The non-zero elements for the matrix.
B(N)	Double	INPUT	The elements for right hand size vector <i>b</i> .
X(N)	Double	INPUT /	INPUT:
		OUTPUT	Set the elements of initial guess for solution vector
			x_0.
			OUTPUT:
			Return the elements of solution vector <i>x</i> .
INFO	Integer	OUTPUT	Error Code

(1) Argument Details

(2) Error Code

Value	Description
0	Normal return.
-100	"=" in POLICY FILE is illegal.
-200	The value of OpenATI_DURMV_IPARM_1 is illegal
-300	"POLICY" in POLICY FILE is illegal
-310	"PRECONDITIONER" in POLICY FILE is illegal
-400	The value of "MAXMEMORY" in POLICY FILE is greater than free size of
_	memory
-500	Failing to allocate work area
>0	Error code from Xabclib_GMRES. For more detaile, refer 3.1.3.

2.5.4 Argument Details and Error Code of OpenATI_EIGENSOLVE

CALL OpenATI_EIGENSOLVE(N,NNZ,IRP,ICOL,VAL,IORDER, NEV,EV,EVEC,INFO)

Argument	Type	IO	Description
N	Integer	INPUT	The number of dimension for the matrix. (N>=1)
NNZ	Integer	INPUT	The number of non-zero elements for the upper
			triangle part.
IRP(N+1)	Integer	INPUT	Pointes to diagonal elements on each row.
			Note: Satisfy IRP(1)=1, IRP(N+1)=NNZ+1.
ICOL(NNZ)	Integer	INPUT	The row indexes for non-zero elements on the upper
			triangle part.
VAL(NNZ)	Double	INPUT	The values for non-zero elements on the upper
			triangle part.
IORDER	Integer	INPUT	Option parameter for eigensolve
			1 : Compute eigenvalues and eigenvectors from
			the raw value, that means including minus.
			2: Compute eigenvalues and eigenvectors from
			the absolute value
NEV	Integer	INPUT	The number of eigenvalues you need.
EV(NEV)	Double	OUTPUT	The eigenvalues. The k-th eigenvalue is set to EV(k).
EVEC	Double	OUTPUT	The eigenvectors. The k-the eigenvector
(N,NEV)			corresponding to the eigenvalue EV(k) is set to the
			k-th column.
INFO	Integer	OUTPUT	Error Code

(1) Argument Details

(2) Error Code

Value	Description
0	Normal return.
-100	"=" in POLICY FILE is illegal.
-200	The value of OpenATI_DURMV_IPARM_1 is illegal
-300	"POLICY" in POLICY FILE is illegal
-310	"PRECONDITIONER" in POLICY FILE is illegal
-400	The value of "MAXMEMORY" in POLICY FILE is greater than free size of

	memory
-500	Failing to allocate work area
>0	Error code from Xabclib_LANCZOS. For more detail, refer 3.1.4.

2.5.5 Usage Example

An example of policy file

POLICY	=	ACCURACY
RESIDUAL	=	1.0D-10
CPU	=	16
PRECONDITIC	NER =	ILUO
MAXMEMORY =	1.0	
MAXTIME =	500	.0

Before running, set global variables "OPENATI_POLICY" as follow.

(In case of file name is "input_policy.data")

OPENATI_POLICY = input_policy.data

When OpenATI_LINEARSOLVE running is complete, computation result and input parameters are recorded in "OPENATI_POLICY_REPORT.txt".

An example of "OPENATI_POLICY_REPORT.txt" as follow.

***** OpenATI LINEAR SOLVER POLICY REPORT *****	
***** 2010.0114 11:30 *****	<- report date / time

<pre>[Environment variables] OPENATI_DEBUG = OPENATI_POLICY = ./input_policy.dat [Policy Definitions] POLICY = ACCURACY SMPs = 16 SOLVER = XABCLIB_GMRES PRECONDITIONER = ILUO REQUIREMENT WORKING MEMORY = 16.00000000000000 <<< Upper Bound 16GBYTE >>> REQUIREMENT RESIDUAL = 1.00000000000000E-008 REQUIREMENT MAX. TIME = 500.00000000000</pre>	input parameters v
MAX. SUBSPACE SIZE = 14214 RUNTIME MEMORY USE = 3.24 [GBYTE] KRYLOV SUBSPACE EXPAND AT = 1 ,MATVEC AT = 1 Initial Gram-Schmidt Strategy = BCGS	
====== OPENATI_LINEARSOLVE SUCCESSFULY ENDED ======	successfully exit
$ \begin{bmatrix} \text{OPENATI}_L \text{INEARSOLVE RESULT} \\ \text{MATRIX DATA} & : \text{N}= 14214 \text{ NNZ}= 259688 \\ \text{FASTEST MATVEC NO.} = 11 \\ \text{FINAL KRYLOV SUBSPACE SIZE} & 42 \\ \text{FINAL Gram-Schmidt Strategy} = \text{DGKS} \\ 2-\text{Norm of RHS} = 25.2388589282479 \\ \text{NUMBER OF RETRYED GMRES} = 6 \\ \text{TOTAL RESTARTS of GMRES} = 197 \\ \text{RESIDUAL NORM} & = 3.005885687924543E-010 \\ \text{SET-UP TIME} & = 1.126790046691895E-002 \\ \text{SOLVER TIME} & = 1.32032704353333 \\ \end{bmatrix} $	v result report v <- fastest OpenATI_DURMV case <- Msize for convergence <- initial norm of RHS <- retried iterations EC] EC]
TOTAL TIME = 1.33159494400024 [S	EC]

- 3. Xabclib : A Numerical Library with Auto-tuning Facility on OpenATLib
- 3.1 Xabclib_LANCZOS
- 3.1.1 Overview of the function

Xabclib_LANCZOS can compute several eigenvalues from the absolutely largest value for large-scale symmetric matrices in the standard eigenproblem.

3.1.2 Target problem formularization and data format

(1) Target problem

The target problem is the standard eigenproblem $A v = \lambda v$ for computing eigenvalues and eigenvectors on large-scale sparse matrices, where A is a large-scale sparse matrix, λ is an eigenvalue, and v is an eigenvector.

(2) Input data format

The data format for input symmetric sparse matrix A is Compressed Row Storage (CRS) shown in Fig.3-1. Please note that the format is dedicated for symmetric matrices, hence we do not need lower elements.

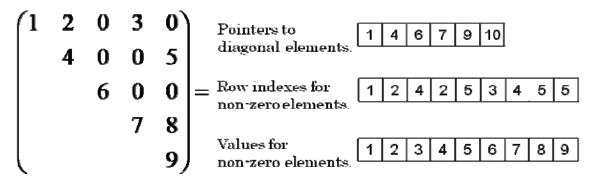


Fig. 3-1 Compressed Row Storage (CRS) for Symmetric Matrices.

3.1.3 The Lanczos Method

The Lanczos method using this library is shown in Fig. 3-2. The algorithm is based on the algorithm referred by [3].

1. *Start with* $v_0 \equiv r, \beta_0 := ||r||_2, lock = 0$ 2. For $IR = 1, 2, \dots, maxrestart Do$: 3. For $j = lock + 1, \dots, m$ Do: Compute $v_i := r / \beta_0$ 4. 5. $r:=Av_i$ 6. $\alpha_i := (r, v_i)$ 7. *if* (j = 1) *then* $r := r - \alpha_j v_j$ 8. *if* $(j \neq 1)$ *then* $r := r - \alpha_j v_j - \beta_{j-1} v_{j-1}$ 9. $r \perp V_{i-1}$ by modified Gram - Schmidt 10. $\beta_i \coloneqq \|r\|_2$ 11. EndDo 12. k - th residual estimate with $|\beta_m S_{m,k}| / |\Theta_k|$ for k = lock + 1, NEV 13. 14. creat Ritz vectors $Q_k = V_m S_k$ 15. count – up 'new locked' Ritz pair 16. if $(lock + 'new \ lock' \ge NEV)$ goto exit

17. create new starting Shur vector $r = V_m S_{new \ locked'+1}$ 18. deflation $V_{lock+L} = Q_{lock+L}$ for L = 1, 'new lock', then lock = 'new lock' 19. EndDo

Fig. 3-2 The Lanczos Method.

3.1.4 Argument Details and Error Code

Argument	Type	IO	Description
Ν	Integer	INPUT	The number of dimension for the matrix. $(N>=1)$
NNZ	Integer	INPUT	The number of non-zero elements for the upper triangle part.
IRP(N+1)	Integer	INPUT	Pointes to diagonal elements on each row. Note: Satisfy IRP(1)=1, IRP(N+1)=NNZ+1.
ICOL(NNZ)	Integer	INPUT	The row indexes for non-zero elements on the upper triangle part.
VAL(NNZ)	Double	INPUT	The values for non-zero elements on the upper triangle part.
NEV	Integer	INPUT	The number of eigenvalues you need. The execution time increases according to the NEV. If NEV>100, the execution time will be enormous, hence it may not solve in practical time.
EV(NEV)	Double	OUTPUT	The eigenvalues. The k-th eigenvalue is set to EV(k).
EVEC (LDE,NEV)	Double	OUTPUT	The eigenvectors. The k-the eigenvector corresponding to the eigenvalue EV(k) is set to the k-th column.
LDE	Integer	INPUT	The dimension of EVEC array (LDE $<$ N)
MSIZE	Integer	INPUT	The restart frequency. Set MSIZE > NEV.
IPARM(10)	Integer	INPUT / OUTPUT	 Library patameters for the Lanczos method. (Integer) IPARM(1): INPUT 1: Compute eigenvalues and eigenbectors from the raw
			 value, that means including minus. 2 : Compute eigenvalues and eigenbectors from the absolute value. IPARM(2) : INPUT
			 Set maximum restart frequency for Lanczos method. IPARM(3): OUTPUT
			Returns the actual restart frequency.IPARM(4)
			If IAT(1)=1, (INPUT)
			Set initial restart frequency. If $IPARM(4) < NEV$

(1) Argument Details

			then IPRAM(4)=NEV. OUTPUT)
			Returns the actual restart frequency.
			• IPARM(5) IPARM(10)
			For future extension.
RPARM(10)	Double	INPUT/	Library patameters for the Lanczos method. (Double)
		OUTPUT	• RPARM(1):INPUT
			Set the convergence test value for eigenvalue and
			eigenvector computation. The test norm in this solver is
			as follows:
			$\frac{\left\ Ax - \lambda x\right\ }{\left\ \lambda\right\ } .$
			• RPARM(2)
			(INPUT)
			Tolerance maximum execution time in second.
			(OUTPUT)
			Returns the actual execution time in second.
			• RPARM(3) :INPUT
			The threshold value for MM ratio to judge restart
			frequency. It is same as OpenATI_DAFRT_RPARM_1
			on OpenATI_DAFRT.
			• RPARM(4) RPARM(10)
			For future extension.
IAT(10)	Integer	INPUT/	Auto-tuning control parameters.
	0	OUTPUT	• If IAT(1)=1, the best restart frequency is set by using
			auto-tuning facility.
			• IAT(2) :INPUT
			1 : Perform SpMxV with the best method using
			auto-tuning facility.
			2 : Perform SpMxV with taking into account avairable
			memory space at run-time using auto-tuning
			facility.
			-11 : Perform SpMxV with Row Decomposition method.
			-12 : Perform SpMxV with Normalized NZ method.
			-13 : Perform SpMxV with Normalized NZ method with
			parallel vector reduction.

WK	Double	WORK	 IAT(3) :OUTPUT Retuens the number indicating performed SpMvx implementation. IAT(4) IAT(10) For future extension.
wk (LWK)	Double	WORK	Workspace.
	Integer	INPUT	The size of the double precision workspace WK.
	integer		Satisfy LWK >= (1+MSIZE)*N + 2*MSIZE*MSIZE + 7*MSIZE + 5*NEV +2.
IWK	Integer	WORK	Workspace.
(LIWK)			
LIWK	Integer	INPUT	The size of the integer workspace IWK.
			Satisfy
			$LIWK \ge 5*MSIZE + 3.$
INFO	Integer	OUTPUT	Error code.

(2) Error Code

Value	Description
0	Normal return.
Less than 0	If -i returns, the value of i-th argument is illegal.
100	Computation was stopped by breakdown for zero vector division.
200	Computation was stopped by abnormal computation of eigenvalues in part of
	tridiagonal matrix computation.
300	Computation was stopped by exceeding the maximum number of restart.
400	Computation was stopped by exceeding the execution time tolerance.
500	Computation was stopped by failing to allocate memory in case of IAT(2)=-12,-13.

3.2 Xabclib_GMRES

3.2.1 Overview of the function

Xabclib_GMRES can solve large-scale non-symmetric sparse matrices in the linear equations problem.

3.2.2 Target problem and data format

(1) Target problem

The problem to be solved in the library is the linear equations problem A = b, where A is a large-scale sparse matrix, x is a solution vector, and b is a right hand side vector.

(2) Input data format

The non-symmetric sparse matrix format is Compressed Row Storage (CRS) for non-symmetric matrices shown in Fig. 3-3.

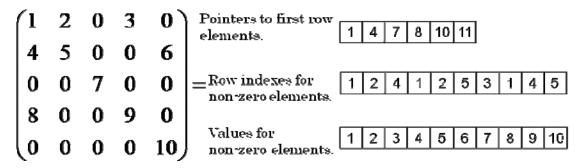


Fig. 3-3 Compressed Row Storage (CRS) for Non-symmetric Matrices.

3.2.3 Overview of the algorithm

The algorithm used in this solver is the GMRES method, which is shown in Fig. 3-4. The algorithm was presented in [4].

1. Compute
$$r_0 = b - Ax_0$$
, $\beta := ||r_0||_2$, and $v_1 := r_0 / \beta$
2. Define the $(m+1) \times m$ matrix $\overline{H}_m = \{h_{ij}\}_{1 \le i \le m+1, 1 \le j \le m}$, Set $\overline{H}_m = 0$
3. For $j = 1, 2, \dots, m$ Do:
4. Compute $\omega_j := Av_j$
5. For $i = 1, \dots, j$ Do:
6. $h_{ij} := (\omega_j, v_j)$
7. $\omega_j := \omega_j - h_{ij}v_j$
8. EndDo
9. $h_{j+1,j} = ||\omega_j||_2$. If $h_{j+1,j} = 0$ Set $m := j$ and go to 12
10. $v_{j+1} = \omega_j / h_{j+1,j}$
11. EndDo
12. Compute y_m the minimizer of $||\beta e_1 - \overline{H}_m y||_2$ and $x_m = x_0 + V_m y_m$.

Fig. 3-4 The GMRES Method.

3.2.4 Argument Details and Error Code

Argument	Type	IO	Description
N	Integer	INPUT	The number of dimension for the matrix. $(N>=1)$
NNZ	Integer	INPUT	The number of non-zero elements for the matrix.
IRP(N+1)	Integer	INPUT	Pointes to first position on each row for the matrix.
			Note: Satisfy IRP(1)=1, IRP(N+1)=NNZ+1.
ICOL(NNZ)	Integer	INPUT	The row indexes for non-zero elements for the matrix.
VAL(NNZ)	Double	INPUT	The non-zero elements for the matrix.
B(N)	Double	INPUT	The elements for right hand size vector b .
X(N)	Double	INPUT /	INPUT:
		OUTPUT	Set the elements of initial guess for solution vector x_0 .
			OUTPUT:
			Return the elements of solution vector <i>x</i> .
KIND_PRE	Integer	INPUT	Set preconditioner kinds.
COND			1 : None.
			2 : Jacobi.
			3 : SSOR.
			4: ILU(0).
PRECOND	Double	INPUT /	INPUT:
(NPRE)		OUTPUT	• If IPCPARM(1)=1, then
			none to be set.
			• If IPCPARM(1)=2, then
			set preconditioner kind of M already specified.
			OUTPUT:
			• If IPCPARM(1)=1, then
			the preconditioner kind of M returns.
			• If IPCPARM(1)=2, then
			no modification.
NPRE	Integer	INPUT	The size of PRECOND array.
			If KIND_PRECOND is 2, then NPRE ≥ 0 .
			If KIND_PRECOND is 3 or 4, then NPRE \geq N.
IPCPARM	Integer	INPUT	Preconditioner Parameters (Integer)
(10)			• IPCPARM(1)

(1) Argument Details

			1 . Comento Duccon dition on M
			1 : Compute Preconditioner M.
			2 : Use precondition M inputed by user.
			• IPCPARM(2) IPCPARM(10)
			For future extension.
RPCPARM	Double	INPUT	Preconditioner parameters (Double)
(10)			• RPCPARM(1)
			If KIND_PRECOND=3, then
			Set parameter ω for SSOR preconditioner.
			If KIND_PRECOND=4, then
			Set threathold value to judge breakdown when
			computing ILU(0) preconditioner.
			• RPCPARM(2) RPCPARM(10)
			For future extension.
MSIZE	Integer	INPUT	Restart Frequency.
IGRPARM	Integer	INPUT/	Library parameters for GMRES Method. (Integer)
(10)		OUTPUT	• IGRPARM(1) : INPUT
			Set maximum restart frequency for GMRES method.
			• IGRPARM(2) : OUTPUT
			Final restart frequency returns.
			• IGRPARM(3)
			If $IAT(1)=1$,
			(INPUT)
			Set initial restart frequency. If initial value is not
			positive, then it's set 2.
			(OUTPUT)
			Returnss the actual restart frequency.
			• IGRPARM(4) IGRPARM(10)
			For future extension.
RGRPARM	Double	INPUT	Library parameters for GMRES Method. (Double)
(10)			• RGRPARM(1) :INPUT
			Set the threthold value of convergence test. The
			convergence test is done with the following formula:
			$\frac{\left\ M^{-1}(b-Ax)\right\ }{\ M^{-1}b\ }.$
			$\ M^{-1}b\ $
			• RGRPARM(2)
	L	1	L

IAT(10)	Integer	INPUT/ OUTPUT	 (INPUT) Set maximum tolerance execution time in second. (OUTPUT) Returns the actual execution time in second. RGRPARM(3):INPUT Set threthold value of MM ratio to judge restart frequency. It is same as OpenATI_DAFRT_RPARM_1 on OpenATI_DAFRT. RGPARAM(4):OUTPUT Returns the residual value. RGRPARM(5) RGRPARM(10) For future extension. Auto-tuning parameters. If IAT(1) = 1, set the best restart frequency with auto-tuning facility. IAT(2): INPUT set the best implementation of SpMxV with auto-tuning facility. Perform SpMxV with Row Decomposition Method. Perform SpMxV with Normalized NZ Method. Perform SpMxV with Original Segmented Scan. IAT(3):OUTPUT Retuens the number indicating performed SpMvx implementation. IAT(4) IAT(10) For future extension.
WK (LWK)	Double	WORK	Workspace.
LWK	Integer	INPUT	The size of the workspace for double precision WK.
	- 0		Satisfy
	•		
			LWK >= (MSIZE+2)*N + (MSIZE+1)*(MSIZE+1)
			LWK >= $(MSIZE+2)*N + (MSIZE+1)*(MSIZE+1)$ + $(N-1)/2+1$.

(2) Error Code

Value	Description			
0	Normal return.			
Less than 0	If -i returns, the value of i-th argument is illegal.			
100	Computation was stopped by failing to make preconditioner.			
200	Computation was stopped by breakdown.			
300	Computation was stopped by that the value of OpenATI_DAFRT is illegal.			
400	Computation was stopped by exceeding the execution time tolerance.			
500	Computation was stopped by exceeding the maximum number of restart.			
600	Computation was stopped by failing to allocate memory in case of IAT(2)=-12,-13.			
700	Computation was stopped by the value of LUINF exceeds Integer max in case of			
	ICASE=21.			

4. References

- T. Sakurai, K. Naono, M. Egi, M. Igai, and H. Kidachi: Proposal on Runtime Parameter Auto Tuning Approach for Restarted Lanczos Method, IPSJ SIG Notes, 2007-HPC-111, pp.173-178, (2007)(in Japanese).
- [2] M. Kudo, H. Kuroda, T. Katagiri, and Y. Kanada: The Effect of Optimal Algorithm Selection of Parallel Sparse Matrix-Vector Multiplication, IPSJ SIG Notes, 2002-ARC-147, pp.151-156 (2002)(in Japanese).
- [3]V. Hernandez, J. E. Roman, and A. Tomas: Evaluation of Several Variants of Explicitly Restarted Lanczos Eigensolvers and Their Parallel Implementations, High Performance Computing for Computational Science - VECPAR 2006, pp.403-416 (2007).
- [4] Y. Saad: Iterative methods for sparse linear systems, SIAM, (1996).
- [5]Guy E. Blelloch, Michael A. Heroux, and Marco Zagha: Segmented Operations for Sparse Matrix Computation on Vector Multiprocessors, Carnegie Mellon University, Pittsburgh, PA, (1993).
- [6] K. Naono, M. Igai and H. Kidachi: Performance Evaluation of the Gram-Schmidt Orthogonalization Library with Numerical Policy Interface on Heterogeneous Platforms, IPSJ Tran. on Advanced computing systems, 46(SIG_12(ACS_11)), pp.279-288 (2005)(in Japanese).
- [7]Daniel, J., Gragg, W.B., Kaufman, L. And Stewart, G.W.: Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization, Math. of Computation, Vol.30, pp.772-795 (1976).
- [8] K. Naono, M. Igai and H. Kidachi: Performance Evaluation of the Gram-Schmidt Orthogonalization Library with Numerical Policy Interface on Heterogeneous Platforms, Transaction on Advanced Computing Systems, Vol. 46 No. SIG12 (ACS11), pp. 279-288 (2005) (in Japanese).