TR-96-015

PM :
A High-Performance
Communication Library
for Multi-user Parallel Environments

Hiroshi Tezuka Atsushi Hori Yutaka Ishikawa

E-mail: {tezuka,hori,ishikawa} @tre.rwep.or.jp

Received 11 November 1996
Tsukuba Research Center, Real World Computing Partnership
Tsukuba Mitsui Building, 16th floor, 1-6-1 Takezono
Tsukuba-shi, Ibaraki 305, Japan

Abstract We have developed a communication library
called PM for a workstation cluster using Sun SPARC-
station 20/71’s on a Myricom Myrinet. PM supports i)
network context switching for the multi-user parallel pro-
cessing environment and ii) FIFO message delivery. The
Modified ACK/NACK flow control algorithm has been de-
veloped to realize these features. We implemented PM us-
ing several techniques for the Myrinet network interface
such as Immediate Sending and obtained 24 micro seconds
of latency and 32 M bytes per second of throughput with
Myrinet 2.3.

1 Introduction

It has become possible to cluster workstations to make a
high cost performance parallel machine, using high-performance
Unix workstations and high-speed interconnect technolo-
gies such as ATM LAN, Fibre Channel and Myrinet[1].
In a workstation cluster, the SPMD programming model is
employed in the sense that a single program runs on several

workstations. A process for the program on a workstation
communicates with processes on the other workstations to
exchange data. A window-based network protocol such
as TCP is not suitable in such an environment because
the increasing number of sender nodes needs more window
buffers in a receiver node. If the total buffer size is limitted,
larger number of sender nodes causes each window buffer
size smaller and communication performance lower. Thus,
the design and implementation of a scalable high perfor-
mance network protocol is very crucial in a workstation
cluster.

Recently, user memory mapped network drivers such
as Active Messages[2] and Fast Messages[3] on Myrinet
achieve a low latency and high-bandwidth communication.
In these drivers, the user process directly accesses the net-
work hardware so that kernel traps and data copys are
eliminated. However, such a communication facility is only
used by a single process because the process exclusively
uses the network hardware resource.

We have designed an operating system called SCore and
a communication library called PM using Myrinet to sup-
port multi-user parallel processing environment. In our
workstation cluster, SCore is implemented as a daemon
process called SCore-D on top of a Unix operating system,
and it manages the user processes distributed to several
workstations as shown in Figure 1. We call these user pro-
cesses a parallel process. A parallel process directly accesses
the Myrinet hardware resources like in AM and FM. How-
ever, using gang scheduling, SCore-D changes the context
of the parallel process including the network state to al-
low multiple users to use the workstation cluster in a time
space sharing (TSSS[4]) fashion. A SCore-D daemon pro-
cess communicates with other SCore-D daemon processes
via Myrinet to implement the gang scheduling. That is,
two processes, the user and daemon processes, access the
Myrinet hardware resources simultaneously.

PM supports i) Multiple communication Channels for
a user and SCore-D daemon, ii) Channel context switch-
ing for multi-user parallel processing environment and iii)
FIFO message delivery. To realize those functionalities, we
have developed the Modified ACK/NACK flow control al-
gorithm. We implemented PM using several techniques for
the Myrinet network interface such as Immediate Sending
and obtained 24 micro seconds of latency and 32 M bytes
per second of throughput.

In this paper, we describe Myrinet briefly in section 1.1,

$S20-0 S$S20-1 S§S20-2 S$S20-3

‘ SCore-D ‘ ‘ SCore-D ‘ ‘ SCore-D ‘ ‘ SCore-D ‘

Figure 1: A parallel processing environment on a workstation cluster

then describe our design goal for PM in section 2. Section 3
describes the design and implementation of PM and sec-
tion 4 shows a performance evaluation for PM. Section 6
describes related works, and section 6 is a summary of this

paper.

1.1 Myrinet

Myrinet is a gigabit LAN commercially produced by Myri-
com Inc. using the research results of Mosaic[5] at Cal-
tech and ATOMIC[6] at USC/ISI. Myrinet consists of three
parts: 1)Link, 2)Host interface and 3)Switch as shown in
figure 2.

SBus

t t Host I/F

Port

- - SRAM 128KB

Switch

Link <t [[LANai
P P> Re | CPU [PMA

Figure 2: Myrinet

The Myrinet link is an 8-bit parallel, bi-directional data
path which has a flow control mechanism using the STOP-
GO method. The Myrinet host interface has a LANai chip
which integrates a 16-bit microprocessor, a network inter-
face and a SBus DMA controller. 128K bytes of high speed
SRAM and line drivers are also on board. The LANai pro-
cessor executes programs stored in SRAM to control the
network interface and the DMA controller. Because all
messages which are transmitted to and received from the
link must be stored in this SRAM, a separate data trans-
fer between the SRAM and main memory is needed. This

on-board SRAM is located in the SBus address space. By
mapping this SRAM address area into the user address
space, user processes can access data in the SRAM directly.

The Myrinet switch is a perfect permutational switch
which employs cut-through routing. It adopts the source
routing method, so the destination of each message is de-
cided using routing information attached to the front of the
message.

It is easy to implement new protocols on Myrinet be-
cause we can change the program on the on-board LANai
processor. Accessing on-board SRAM directly from the
user address space enables us to implement low latency
message transfer using the polling technique. We need to
take care in programming the LANai processor because the
slow speed of the LANai processor (about 5MIPS) can be-
come a bottleneck in performance .

Myrinet is distinguished from other LAN hardwares
such as Ethernet by 1) High bandwidth: 80M bytes per sec-
ond, 2) Guaranteed message delivery using hardware flow
control, 3) Preservation of the order of messages transferred
via the same path and 4) Host interfaces do not have ad-
dresses assgined and routing information must be supplied
by software.

2 Design Goal

The workstation cluster environment which we have de-
veloped has the following characteristics: 1) It supports
multiple users using gang scheduling, 2) A daemon pro-
cess (SCore-D) and a user process use Myrinet simultane-
ously, 3) The number of connected nodes is not dynamically
changed, 4) Configuration of all nodes are the same, and 5)
The execution model is SPMD. From these characteristics
of the workstation cluster, we established our design goals
for PM as follows:

Support for multiple channels The PM Channel is a
communication path which connects all nodes in the
workstation cluster. All nodes communicate via a chan-
nel. A channel supports asynchronous communication.
A message sent from a channel of the sender node is
transferred to the same channel on the receiver node.
PM does not support communication between differ-
ent channels. PM must have multiple channels to allow

Myricom has started shipping the second generation of Myrinet, which uses 32-bit RISC processors
and achieves a 160M bytes/s link speed.

multiple processes (SCore-D and a user process) to use
Myrinet simultaneously.

Low latency, high throughput, variable length messages

Communication latency of PM should be as low as pos-

sible. And, to utilize the high bandwidth of Myrinet,

PM should support a high throughput message trans-

fer rate and high bandwidth communication. PM should
support variable length messages from 8 bytes to around

the physical page size to be used by inter-thread com-
munications and I/O data transfers.

Guaranteeing message delivery PM should guarantee
message delivery. As described in section 1.1, the hard-
ware flow control feature in Myrinet gets round the
problem of missing messages on the data link layer.
But if a message is blocked by hardware flow control,
all messages in other channels using the same link are
also blocked 2. To avoid this situation, messages should
flow continuously, and a software flow control mecha-
nism must be implemented to avoid missing messages
during a receive buffer overflow.

Preserving message order PM should use a flow con-
trol method which preserves the message order.

Channel Context switching Each PM channel is occu-
pied by a process because it polls the channel’s data to
receive messages. Because it is not possible to create
as many channels as needed with the limited resources
available from on-board SRAM, PM should support
context switching of channels to allow a channel to be
used by multiple processes in a time-sharing fashion.

Multicast assistance Myrinet hardware supports 1-to-1
message transfer only. To multicast messages to sev-
eral nodes, the sender must send the same message
to all receiver nodes. PM should decrease this multi-
cast overhead by re-using the previously-sent message
which remains in on-board SRAM.

3 Implementation

This section describes the implementation of PM needed
to decrease latency, increase throughput, and flow control
and context switching.

2For the first generation Myrinet product, if the link is blocked for longer than 50 miliseconds, the
network is reset by hardware to avoid deadlock.

3.1 Decreasing latency

Protocol implementations which use system calls and inter-
rupts and which are used in ordinary LANs such as Ether-
net cannot satisfy the low latency requirement. Although
Active Messages on the SPARCstation+ATM(SSAM)[7]
uses special trap instruction to solve this problem, mod-
ifications to the operating system kernel are required.

We adopted a polling method to decrease the commu-
nication latency. In PM, the LLANai processor transfers
messages and the receiver thread of the user process polls
the message arrival. Polling enables the receiver thread
to know about a message arrival immediately and makes
it possible to communicate with low latency[8]. Because
polling by several processes simultaneously wastes CPU
resources, PM also supports receiving messages using in-
terrupts and this feature is used by SCore-D.

Further, PM uses the Immediate Sending techniques
described in the next section to reduce the latency for large
messages. PM also utilizes the fact that the communication
library and the LANai program are also SPMD programs
to achieve lower latency.

3.2 Increasing throughput

Because the Myrinet network interface can only access the
data in on-board SRAM as described in section 1.1, the
following procedures are needed to transfer data between
main memory on each node.

1. Transferring the data by DMA from main memory to
on-board SRAM.

2. Sending the data from on-board SRAM to the network.
3. Receiving the data from the network to on-board SRAM.

4. Transferring the data from on-board SRAM to main
memory.

The sequential execution of DMA and message trans-
mission cannot utilize the bandwidth of the DMA con-
troller and the network interface. In this fashion, it is
not possible to achieve high throughput. Although dou-
ble buffering allows the DMA transfer of the next message
to be executed at the same time that the current message
is being sent can increase the throughput, it cannot lower
the latency of each message transfer.

We developed an another technique called Immediate
Sending that starts sending data from the SRAM to the

network immediately after the DMA transfer from main
memory to SRAM begins. Immediate sending can both
increase the throughput and lower the latency. Figure 3
shows the effect of Immediate Sending.

Sequential DMA 1 DMA 2

f Latency |
Double Buf. | DMA 1 | DMA 2 |

[Send1 | [Send2 |

- Latency |

Send Imm. | DMA 1] DMA 2 |
[Send 1 | Send 2 |
j«—— Latency —=]

Figure 3: Immediate Sending

On a receiver node, it is not possible to execute receiv-
ing a message and DMA transfer simultaneously, because a
CRC error is detected after the whole message is received.
PM uses the double buffering technique on the receiver
node to increase throughput.

3.3 Flow control

The flow control method for a workstation cluster should
be scalable because it must work efficiently even if there
are a large number of nodes. A window-based flow con-
trol algorithm is not scalable, because the receiver node
must manage receive buffers dedicated to each sender node,
and a larger number of nodes makes the effective buffer
size smaller. Although the ordinary “ACK/NACK and re-
transmit” method or “Return To Sender [3]” which sends
back a messages which cannot be received does not have
such a dividing buffer problem, they do not preserve the
message order.

We developed a scalable flow control method which pre-
serves the order of messages and implemented it in PM.
This algorithm is called Modified ACK/NACK in the sense
that it uses the ACK/NACK and re-transmit method and
the sender/receiver state is introduced to guarantee the
message order. Details of the Modified ACK/NACK al-
gorithm are as follows. Here, Msg(s,r,n) represents the
nth message which sent from the sender node Node(s) to
the receiver node Node(r). Buf(r,n) represents the send
buffer which corresponds to Msg(s,r,n). Ack(r,n) and
Nack(r,n) represents the positive and negative acknowl-
edge for Msg(s,r,n) respectively.

6

Sender node :
The sender node has two states: normal and Noi-to-
send.

Normal state :

e The sender node Node(s) transmits a message
Msg(s,r,i) to the receiver node Node(r). The
send buffer Buf(r, 1) is not freed after the trans-
mission.

e When Node(s) receives positive acknowledge Ack(r, 1),
it frees Buf(r,j) where j < i.

e When Node(s) receives negative acknowledge
Nack(r,i), it frees Buf(r,j) where j < k and
re-transmits Msg(s,r,l) where k <1 < i. Then
Node(s) enters the Not-to-send state that in-
hibits transmission of messages except for these
being re-transmitted.

Not-to-send :

e When Node(s) receives Ack(r, k), it frees Buf(r, k)
and enters the normal state to resume transmis-
sion.

e When Node(s) receives Nack(r, k), it re-transmits
Msg(s,r, 1) where k <[< again.

Receiver node :
The receiver node has two states: normal and Not-to-
receive.

Normal state :

e When the receiver node Node(r) receives M sg(s,r, 1)
normally, it returns Ack(r, i) to the sender Node(s).

e If Node(r) receives adjacent messages Msg(s,r, i) ~
Msg(s,r k), it only returns Ack(r, k) for the
last message.

e If Node(r) cannot receive Msg(s,r,i) because
of a receive buffer shortage, it discards the mes-
sage and returns Nack(r,i) to Node(s). Node(r)
records (s,i) and it enters the not-to-receive
state to rejects all Msg(s,r,j) where j # i.

Not-to-receive state :

e Node(r) does not receive M sqg(s,r, j) where j #
¢ and does not reply to sender.

e If Node(r) receives the re-transmitted message
Msg(s,r,1), it returns Ack(r,i) to Node(s) and
enters the normal state to resume receiving mes-
sages again.

Figure 4 shows an example of the flow control algo-
rithm.

Sender Receiver

S1 Send(i)

Send(i+1) Msg(i)

Send(i+2) Recv(i) R1

Send(i+3) | Msg(i+3) Fail(i+1) R2

S2 Release(i) Reject(i+2) R3

Ack() =

—
S3 Resend(i+1) |a— " Nack(i+1) Reject(i+3)

Resend(i+2) Msg(i+1)

Msg(i+2)

Resend(i+3) Recv(i+1) R4

Ack(i+1) Recv(i+2)
S4 Release(i+1) Recv(i+3) RS

Send(i+4)|
Ack(i+3) Msg(i+4)
Release(i+2)
S2 Recv(i+4)

Release(i+3)

Figure 4: An example of Modified ACK/NACK flow control

In this flow control algorithm, the message order is pre-
served because succeeding messages are not received until
the message which could not be received first is received
normally. This algorithm requires a one-dimensional array
to remember which message (s,i) cannot be received for
each sender node. But this array does not occupy a large
address space in the workstation cluster. The Myrinet,
hardware which guarantees the delivery of messages, allows
us to use this simple flow control algorithm. An advantage
of Modified ACK/NACK flow control is that the sender
node can know whether a message has arrived at the re-
ceiver node or not. We use this feature to implement the
channel context switching described in the next section.

The drawback of this flow control algorithm is the pos-
sibility to increase the network load when re-transmission
occurs, because the sender continues to transmit messages
until a NACK arrives at the sender node.

3.4 Context Switch

The channel context of PM consists of data structures and
buffers in the host main memory, and LANai on-board
SRAM corresponding to the channel. To switch the chan-
nel context, these memory areas are saved to main memory
and the next channel context is restored. Context switch-
ing of channels must not cause duplicate messages, missing
messages or messages becoming mixed between contexts.
The channel context should be switched while the channel

is in the Stable state, which means that no out-going mes-
sages or in-coming acknowledges are present. PM utilizes
the ACK/NACK used in flow control to detect when the
channel is in the stable state. When all ACK/NACK’s for
messages already sent are returned, the state of messages
in the send buffer is confirmed as 1) Normally received, 2)
Needs re-transmission or 3) Not sent yet, and it is con-
firmed that no messages are on the network.

Channel context switching in PM is performed as fol-
lows:

C1 Stop all sending on the channel except ACK/NACK.
C2 Wait until all out-going messages have been sent.
C3 Wait until all ACK/NACK to other nodes have been

sent.

C4 Wait until all ACK/NACK’s for sent messages have
been received.

C5 Synchronize all nodes.
C6 Save current channel context to main memory.
C7 Restore next context from main memory.

C8 Resume sending.

In this procedure, synchronizing all nodes at C'5 must be
done outside of PM, because PM itself has no mechanism
to synchronize nodes. For this purpose, other PM channels
can be used by an operationg system. Further, execution of
the processes which share one channel must be controlled
to be consistent with the channel context.

3.5 Work Load Assignment

To achieve high performance communication using Myrinet,
the host processor should do as many tasks as possible
and the LANai processor should do as few tasks as possi-
ble, because the LANai processor is slower than the host
processor. In our PM implementation, the host processor
takes charge of send buffer management and preparing send
messages, and the LANai processor takes charge of send-
ing and receiving messages, receive buffer management and
flow control. In spite of these work load assignments, the
flow control overhead executed by the LANai processor is
large and it increases the communication latency.

3.6 Application Program Interface

Table 1 shows a part of the application program interface of
PM. Because of the restriction of SBus that is required to
change privileged registers to do DMA transfer to/from any
address, PM uses a pre-allocated area for the send/receive
buffers. Although this static allocation of buffers requires
PM to get a send buffer before sending a message, and to
return a receive buffer after use, copying data is avoided
by constructing messages directly in the buffer area.

Table 1: API of PM (subset)

_pmLANailnit Initialize the host interface.
_pmlnit Initialize per process data.
_pmGetSendBuf Get a send buffer.
_pmSend Send a message.
_pmReceive Receive a message.

_pmPutReceiveBuf = Return the receive buffer.
_pmSendActivate Stop/Start sending.
_pmSendStable Check if channel is stable.
_pmSaveChannel Save a channel context
_pmRestoreChannel Restore a channel context

4 Evaluation

We implemented PM on a 9-node SPARCstation20/71 clus-
ter with Myrinet 2.3 as shown in Figure 5, and evaluated
its latency, throughput, effect of multicast assistance and
channel context switching.

SS20

Ci

0
L0 1, L0 1,
SW0 / swi

()

Figure 5: 9-node cluster

10

4.1 Latency

Figure 6 shows the one-way latency of PM. In this evalua-
tion, we varied the message size from 8 to 4096 bytes, and
measured 1) With Immediate Sending, 2) Without Imme-
diate Sending.

Latency(Sec) x 106

1. Immediate Sending

250.00

Size(Byte) x 103

0.00 1.00 2.00 3.00 4.00

Figure 6: Latency

PM latency for an 8 byte message is about 24 micro
seconds as shown in figure 6. Figure 6 also shows that
the Immediate Sending technique decreases the latency for
large messages.

4.2 Throughput

Figure 7 shows the throughput for PM. In this evaluation,
we varied the message size from 8 to 4096 bytes, and mea-
sured 1) With Immediate Sending + receive double buffer-
ing, 2) With Immediate Sending only and 3) Without Im-
mediate Sending and receive double buffering.

Bandwidth(Bytes/Sec) x 108

1. Tmm.Sending+Recv.Dbuf.

| — T |2 immediate Sending
T A e — 3 Seguiential T
25.00
20.00
15.00 - /
/
vy
/
10.00 1'
%’l
5.00 it
0.00
Size(Byte) x 103
0.00 1.00 2.00 3.00 4.00

Figure 7: Throughput

11

Figure 7 shows that the Immediate Sending technique
increases the throughput of large messages, and receive
double buffering increases the throughput for all message
sizes. The maximum throughput of PM is about 32M bytes
per second with 4096 byte messages.

4.3 Multicast

Figure 8 shows the effect of multicast assistance on PM.
In this evaluation, we varied the number of receiver nodes
from 1 to 8, and measured 1) With multicast assistance, 2)
Without multicast assistance: sender nodes repeat sending
for all receiver nodes. Message size is 4096 bytes. Figure 8
shows the throughput per receiver node.

Bandwidth(B/s) x 106

Multicast

30.00 Unicast

25.00

20.00

15.00

10.00

5.00

0.00

2.00 4.00 6.00 8.00

Figure 8: Multicast

Although repeat sending for N receiver nodes decreases
the effective throughput to 1/N, we achieved about twice
the throughput of ordinary sending with 8 receiver nodes
using multicast assistance in PM.

Due to the limitation of the Myrinet link speed, multi-
cast to a larger number of receiver nodes requires another
technique, for example copying and transferring data in a
tree structure.

4.4 Context Switch

Table 2 shows the time to save and restore a channel con-
text. We measured the four cases: 1) No message in the
buffer, 2) Send buffer is full: 511 messages (12K bytes) are
in the send buffer, 3) Receive buffer is full: 2730 messages
(32K bytes) are in the receive buffer and 4) Both send and
receive buffers are full.

12

Table 2: Context Switch time(mili seconds)

condition save | restore
No message 0.13 0.11
Send buffer full 1.88 1.40
Receive buffer full 3.39 1.95
Send and Receive buffer full | 5.15 3.22

It takes longer to save or restore the channel context
when messages are in the buffers. This is because PM has
a relatively large message buffer and the overhead to access
the on-board SRAM via the SBus is large.

Although the amount of data to be transferred in saving
and restoring the context is the same, saving the context
takes longer than restoring it. This is because reading data
from the SBus address space takes longer than writing data
to it.

5 Related Works

There are several different implementations of the messag-
ing layer on Myrinet, such as Myrinet API[9] (Myricom),
Fast Messages on Myrinet[3] (Illinois University) and Ac-
tive Messages[10] on Myrinet[2] (UCB).

Myrinet API supports multiple channels, scatter re-
ceiving and gather sending of messages and dynamic rout-
ing information generation. Myrinet API is optimized for
throughput with large message, and its maximum band-
width is about 26M bytes per second for 8192 byte mes-
sages. But the minimum latency of Myrinet API is large:
about 100 micro second. Hence Myrinet API has no flow
control mechanisms, reliable message delivery is made by
an upper layer library called Mt. TCP/IP is also imple-
mented on Myrinet API enabling Myrinet to be used as an
ordinary LAN.

FM on Myrinet is designed to achieve high throughput
with small message sizes, and its minimum latency is about
22 microseconds (8 byte messages) and maximum through-
put is 17M bytes per second (1024 byte). MPICH[11], a
portable implementation of MPI[12], on FM has a perfor-
mance comparable with MPI on IBM SP2.

Figure 9 shows the latency and figure 10 shows the
throughput for PM and FM for several message sizes.

As shown in figure 9, the latency on FM for a large

13

Latency(Sec) x 106

110.00 -
100.00
90.00
80.00
70,00
60.00
50,00
4000
3000
20,00 H=—
10,00
0.00

Size(Byte) x 103

0.00 0.20 0.40 0.60 0.80 100

Figure 9: Latency of PM and FM

message size is larger than for PM. This is because 1) In
FM, the message to be sent is copied to on-board SRAM
by the host processor instead of the DMA, 2) PM adopts
immediate sending as described in section 3.

Bandwidth(Bytes/Sec) x 108

S 0 o e B E— e m DU

20.00

15.00

10.00

5.00

0.00
0.00 0.20 0.40 0.60 0.80 1.00

Size(Byte) x 108

Figure 10: Throughput of PM and FM

(3] proposed Ni: the message size to obtain half the
throughput at maximum bandwidth as an index of the
throughput of a messaging layer. N1 for FM is 54 bytes and
it shows that the throughput with TM for short messages
is very high. Otherwise, N1 for PM is about 300 bytes.
This is because the work load of the LANai is larger than
for FM due to flow control and channel multiplexing. As
shown in figure 10, the throughput for PM is larger than
for FM for messages over 400 bytes.

FM uses Return To Sender (FM ver.1.0) or a window-
based technique for flow control. The former does not guar-
antee the order of messages, and the latter has a problem
with scalability.

The NOW (Network of Workstation) project at UCB

14

implemented Active Messages on Myrinet (LANai Active
Messages). They achieved a 16.1 microseconds latency and
a 28M bytes per second throughput. They constructed a
Web search engine on a AM on Myrinet called Inktomi[13].

Myrinet API, FM and AM on Myrinet do not have a
context switching mechanism like PM does, so it is diffi-
cult to use for any number of processes like our multi-user
environment.

6 Conclusions and future work

We developed a communication library PM for a worksta-
tion cluster using Myrinet and SPARCstation 20’s. PM
supports not only low latency and high throughput com-
munication, but also guarantees message delivery, preserves
the message order, allows variable length messages, multi-
ple channels and network context switching necessary in
a multi-user parallel processing environment. We imple-
mented PM using several techniques such as the Modi-
fied ACK/NACK flow control algorithm and Immediate
Sending to support these features. We were careful in pro-
grajmming the LANai processor to achieve a high perfor-
mance.

We are developing a 36-node SS20 cluster and imple-
menting PM[14] on it. Our future works are to implement
1) a channel protection and 2) real-time capability to trans-
fer continuous media data into PM.

References

[1] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik,
C. L. Seitz, J. N. Seizovic and Wen-King Su. “Myrinet — A
Gigabit-per-Second Local-Area Network”. IEEE MICRO,
Vol. 15, No. 1, pp. 29-36, February 1995.

[2] http://now.cs.berkeley.edu/AM /lam release.html.

[3] Scott Pakin, Mario Lauria and Andrew Chein. “High Per-
formance Messaging on Workstations: Illinois Fast Mes-
sages (FM) for Myrinet”. In Proceedings of Supercomput-
g 95, San Diego, California, 1995.

[4] Atsushi Hori, Takashi Yokota, Yutaka Ishikawa,

Shuichi Sakai, Hiroki Konaka, Munenori Maeda, Takashi

15

[10]

[
[
[
[

Tomokiyo, Jorg Nolte, Hiroshi Matsuoka, Kazuaki
Okamoto, and Hideo Hirono. Time Space Sharing Schedul-
ing and Architectural Support. In D. G. Feitelson and
L. Rudolph, editors, Job Scheduling Strategies for Parallel
Processing, Vol. 949 of Lecture Notes in Computer Science.
Springer-Verlag, April 1995.

C. L. Seitz, N. J. Boden, J. Seizovic, Wen-King Su. The
design of the caltech mosaic ¢ multicomputer. In “Pro-
ceedings of the University of Washington Symposium on
Integrated Systems”, pp. 1-22. MIT Press, 1993.

Felderman, R., DeSchon, A., Cohen, D., Finn, G.,. Atomic:
A high speed local communication architecture. Journal
of High Speed Networks, Vol. 3, No. 1, pp. 1-29, 1994.

T. von Eicken, V. Avula, A. Basu and V. Buch. “Low-
Latency Communication over ATM Networks using Active

Messages”. In Proceedings of Hot Interconnects 1I, 199/
Palo Alto, August 1994.

E. A. Brewer, F. T. Chong, L T. Liu, J. Kubiatowicz and
S. D. Sharma. “remote queues: Exposing network queues
for atomicity and optimization”. In Proceedings of SPAA,
1995.

http://www.myri.com.

T. von Eicken, D. E. Culler, S. C. Goldstein and K. E.
Schauser. “Active messages: a Mechanism for Integrated
Communication and Computation”. In Proc. of the 19th
ISCA, pp. 256-266, May 1992.

11] http://www.mcs.anl.gov/home/lusk /mpich/index.html.

12] http://www.mcs.anl.gov:80/mpi/.

13

]
]
]
]

http://inktomi.berkeley.edu/.

14] http://www.rwcp.or.jp/people/mpslab/score/Pm/.

16

