
RWC PC Cluster II and SCore Cluster System Software
– High Performance Linux Cluster –

Yutaka Ishikawa Hiroshi Tezuka Atsushi Hori Shinji Sumimoto
Toshiyuki Takahashi Francis O’Carroll Hiroshi Harada

Real World Computing Partnership
fishikawa, tezuka, hori, s-sumi, tosiyuki, ocarroll, h-haradag@rwcp.or.jp

http://www.rwcp.or.jp/lab/pdslab/

ABSTRACT

The RWC PC Cluster II, consisting of 128 In-
tel Pentium Pro microprocessors connected by a
Myricom Myrinet giga-bit network, achieves the
comparable speed of a super computer such as
Cray T3E. Its system software called the SCore
cluster system software is built on top of Linux
without any kernel modifications but adding a
driver to the kernel. The SCore Cluster system
software consists of the user-level communica-
tion facility called PM using a Myricom Myrinet
giga-bit network, a communication library MPI
on top of PM, a parallel programming language
system called MPC++, and a global operating
system called SCore-D.

This paper shows that a compact and well
maintainable PC cluster using Linux can be built
and its performance is the comparable super
computer power. The key technology to real-
ize high performance communication is intro-
duced, i.e., so-called zero copy message trans-
fer between nodes and one copy message trans-
fer within a node realized in the PM kernel-level
driver.

1 Introduction

Many high performance clustering research
projects, using commodity hardware with high-
speed networks, have been widely investigated.
Our distinguished approach to realizing such a
cluster system is to design and develop i) a com-
pact and well maintainable PC-based cluster and
ii) a total system software architecture on top of
a commodity operating system, Linux, without
any kernel modifications but adding a driver to
the kernel.

The RWC PC Cluster II is the second gen-
eration of our PC cluster, which consists of
128 Intel Pentium Pro 200 MHz microproces-
sors connected by a Myricom Myrinet giga-bit
network[7]. To make the system compact and
well maintainable, we employ the PICMG PCI-
ISA passive backplane standard[1].

The SCore cluster system software is our
cluster system software running on top of Linux.
To realize the high performance system using
commodity hardware and software, the follow-
ing key technologies have been employed:

� a user-level zero-copy message transfer
mechanism between nodes and one copy
message transfer mechanism within a node
by a high performance communication fa-
cility called PM,



� a high performance MPI implementation
called MPICH-PM/CLUMP that integrates
both zero-copy message transfer and mes-
sage passing facilities in order to maximize
performance, and

� a multi-user environment using gang
scheduling without degrading the commu-
nication performance realized by an oper-
ating system daemon called SCore-D.

In this paper, first, RWC PC Cluster II and
the SCore cluster system are introduced to show
that a compact and well maintainable PC clus-
ter using commodity hardware can be built on
top of Linux. Since the PM kernel-level driver’s
functionality is significant to realize high per-
formance on top of Linux, section 3 introduces
the PM kernel-level driver. The driver supports
so-called zero copy message transfer between
nodes and one copy message transfer within a
node. Then, in section 4, the basic performance
of the communication facility is evaluated. Re-
lated works are presented in section 5.

2 An Overview of RWC PC
Cluster II

2.1 Hardware

The easiest way to build a PC cluster is to
stack off-the-shelf PCs into a rack and connect
them. This method makes possible a cheap
parallel machine composed of commodity hard-
ware components. It, however, requires a lot of
space and suffers from maintenance problems.

The RWC PC Cluster II was designed to
make the system compact and easily maintain-
able unlike the example above. We use the PCI-
ISA passive backplane standard specified by the
PICMG (PCI Industrial Computer Manufactur-

PC Cluster Stack of PCs

Figure 1: PC Cluster and a Stack of PCs

ers Group)1.
The PCI-ISA passive backplane does not in-

clude any active devices which are normally lo-
cated on a motherboard. Instead, a PICMG pro-
cessor board contains all active devices. The
advantages of the passive backplane are, i) its
more maintainable than a motherboard system
and has a much lower mean time to repair, and
ii) it is easy to upgrade to the latest processor
technology. Those advantages are very useful in
constructing a cluster of PCs. Figure 1 depicts
comparison with our system and a stack of PCs.

Figure 2 shows node components: a PICMG
Pentium Pro 200 MHz processor card, a 4
GBytes local disk, a 100 Base-T network card,
and a Myrinet[7] giga-bit network card. Those
cards are plugged into the PCI-ISA passive
backplane. Two nodes are packed into one mod-
ule. As shown in Figure 3, the RWC PC clus-
ter II has four cabinets each of which contains
16 modules and one monitor PC. The 32 pro-
cessor’s serial lines are connected to one moni-

1PICMG is a consortium of over 350 industrial
computer product vendors who collaboratively develop
specifications for PCI-based systems and boards for
use in industrial and telecommunications computing
applications[1].



Figure 2: Components of Each Node

There are three PCs and four displays in the
front of the cluster. You will imagine how RWC
PC Cluster II is small.

Figure 3: RWC PC Cluster II

Table 1: RWC PC Cluster II Specification

Number of Processors 128
Processor Pentium Pro
Clock [MHz] 200
Cache [KB] 512
Memory [MB] 256
I/O Bus PCI
Local Disk 4GB IDE
Network Myrinet

tor PC. Thus, the system has 128 Intel Pentium
Pro processors. Table 1 summarizes the system
specifications.

2.2 An Overview of SCore Cluster
System Software

The high performance computing environment
on the RWC PC Cluster II cannot be real-
ized without the SCore cluster system software
on top of Linux. The SCore System soft-
ware consists of a communication facility called
PM, MPI implemented on PM called MPICH-
PM/CLUMP, a global operating system called
SCore-D, and a multi-threaded programming
language called MPC++.

2.2.1 PM

To achieve a low latency and high band-
width communication, PM directly accesses the
Myrinet network interface to eliminate kernel
traps and data copies between kernel and user
spaces[12]. PM consists of a user-level library,
a kernel-level driver, and a communication pro-
tocol handler on the Myrinet network hardware.

The PM kernel-level driver initializes the
Myrinet network interface and maps the SRAM
of the interface to the user address space so that



the PM user-level library directly accesses it.
Since the PM communication facility is realized
without involving a kernel routine, such a facil-
ity is called a user-level communication facility.

PM realizes not only message passing but
also a remote memory write facility or so-called
zero copy message transfer to provide high
bandwidth communication. In zero copy mes-
sage transfer, a message is transferred using the
DMA facility of the Myrinet network without
any memory copy operation by the host proces-
sor. Since the DMA facility accesses the physi-
cal memory address space, user virtual memory
must be pinned down to a physical memory lo-
cation before the message is transferred. If each
message transfer involves pin-down and release
kernel primitives, message transfer bandwidth
will decrease since those primitives are quite ex-
pensive. We have proposed and implemented
a zero copy message transfer with apin-down
cachetechnique which reuses the pinned-down
area to decrease the number of calls to pin-down
and release primitives[13].

The PM kernel-level driver implements pin-
down and release primitives since themlock
andmunlock primitives are only available un-
der the super user mode. The PM kernel-level
driver will be discussed in section 3.

2.2.2 MPICH-PM/CLUMP

When a message passing library such as MPI
is implemented on top of a lower level com-
munication facility that supports the zero copy
message transfer primitive, the message pass-
ing library must handle the pinned-down mem-
ory area which is a restricted quantity resource
under a paging memory system. Allocation of
pinned-down memory by multiple simultaneous
requests for sending and receiving without a
control can cause deadlock. MPICH-PM, based
on the MPICH implementation, has overcome

this issue and achieves good performance[8].
MPICH-PM/CLUMP, the successor of

MPICH-PM, supports a cluster of multipro-
cessors or called CLUMP. Using MPICH-
PM/CLUMP, The MPI legacy programs run
on CLUMP without any modifications. For
example, suppose a CLUMP consisting of 16
nodes each of which contains dual proces-
sors. MPICH-PM/CLUMP provides an MPI
application with 32 processors or 32 processes.
Communication between two processes on
different nodes is realized by the PM com-
munication facility using a Myrinet network.
Message transfer between two processes on one
node is handled by the PM kernel-level driver
so that one copy message transfer is realized.
The PM kernel-level driver will be discussed in
section 3.

2.2.3 SCore-D

The SCore-D global operating system is imple-
mented as a set of daemon processes on top
of a Unix operating system without any kernel
modification[5]. To utilize processor resources
and to enable an interactive programming en-
vironment, parallel processes are multiplexed
in processors’ space and time domains simulta-
neously under SCore-D. Parallel processes are
gang-scheduled when multiplexed in the time
domain. It has been proved that the SCore-D
gang scheduler overhead is less than 4 % of the
total application execution time[5].

To realize gang scheduling under a commu-
nication layer which accesses the network hard-
ware directly, the network hardware status and
messages inflight on the network must be saved
and restored when switching to another paral-
lel process. This mechanism is called network
preemption. By co-designing PM and SCore-D,
the network preemption technique has been de-
veloped.



2.2.4 MPC++

MPC++ Version 2 is designed in two levels,
level 0 and level 1. Level 0, called Multi-Thread
Template Library (MTTL), specifies parallel de-
scription primitives realized by the C++ tem-
plate feature without any language extensions.
It provides remote function invocation, synchro-
nization structure, and remote memory access
facilities[6] .

Level 1 specifies the MPC++ meta-level
architecture which enables library designers
to provide an optimizer specific to their
class/template library in the library header
file[11]. The library user may use such a high
performance library by including the header file.

3 PM Kernel-level Driver

The PM kernel-level driver initializes the
Myrinet network interface and maps the SRAM
area of the interface to the user address space.
Moreover, the driver supports pin-down and re-
lease primitives for a zero copy message trans-
fer using the Myrinet interface and one copy
message transfer mechanism for communication
within a node. Those functionalities are pro-
vided by theioctl command of the driver.

3.1 Pin-down/release operation

As described in section 2.2.1, a zero copy mes-
sage transfer is realized by using the DMA facil-
ity of the Myrinet interface which requires the
physical memory address. Linux kernel primi-
tive mlock provides that user virtual memory
is pinned down to a physical memory location
while themunlock primitive is to release the
pinned down area. However, those are only
available under the super user mode.

The PM kernel-level driver implements the
same functionality ofmlock andmunlock op-

erations. The amount of total pinned-down area
is restricted to each process so that the physical
memory is not exhausted.

The pindown/release operations are not spe-
cial requirements of PM. Rather, those are re-
quired if a zero copy message transfer is imple-
mented using some I/O card which has a DMA
facility.

3.2 1-copy message transfer support

One copy message transfer between processes
on a multiprocessor might be realized using the
shared memory facility. This is true if the pro-
cesses explicitly allocate the shared region and
accesses the region. However, a communication
library such as MPI using the shared memory
facility involves two times message copies since
the user-level communication area is used with-
out respect to the shared memory region. Fol-
lowing is the typical scenario:

1. The communication library copies the
sender’s data to the shared area in the
sender process.

2. After the receive primitive is posted, the
communication library copies data from
the shared area to the receiver’s memory
area in the receiver process.

To realize one copy message transfer, mem-
ory write to another process’s memory area or
memory read from another process’s memory
area must be required. In the PM kernel-level
driver, the process’s memory read function is
supported because it has less risk than the pro-
cess’s memory write function. The process’s
memory read is only available for processes that
have the parent/child relation. The following is
the typical scenario of one copy message trans-
fer:



�

��

��

��

��

���

���

������ ������ ������ ������ ������ �����	 �����
 ������
��	�
��
�
���	���

�
��
��
��
��
	
�
�
�

�

�
���������
��	�
�
�������
��	�
��������

Figure 4: PM Bandwidth between Nodes

1. The communication library in the sender
process informs the receiver that the send
data is ready.

2. After the receive primitive is posted in the
receiver process and the sender informs the
data ready, the communication library on
the receiver reads the send data and stores
it to the receiver’s memory area.

4 Evaluation

4.1 PM performance between nodes

Figure 4 shows that the PM data transfer band-
width using the RWC PC cluster II. The max-
imum bandwidth is 113.5 MBytes/sec for 256
KBytes in the case of 100 % pin-down cache hit
ratio. 100 % pin-down cache hit ratio means that
all data area is pinned down and never calling
the PM kernel-level driver to pindown an area.

In the case where the pin-down cache is al-
ways miss, the maximum bandwidth is still 78.7
MBytes/sec which is still higher than the band-
width of data transfer with data copy, i.e., us-
ing the PM message passing facility. PM also
achieves a low latency, 7.5� seconds one-way
latency.

�

��

��

��

��

���

���

������ ������ ������ ������ ������ �����	 �����
 ������

��	�
��
�
���	���

��
��
�
��
��
	
�
��

�

�
���������
��	�
�
�������
��	�
��������

Figure 5: Bandwidth between Nodes using
MPICH-PM/CLUMP

Figure 5 shows bandwidth between nodes us-
ing MPICH-PM/CLUMP. Since the PM mes-
sage passing facility is better performance than
the PM zero copy facility in case of less than
8 Kbytes message, a message of less than
8 Kbytes uses the message passing facility
while a message greater than 8 Kbytes uses
the zero copy facility. The performance results
show that 13.16 micro seconds latency and 104
MBytes/sec maximum bandwidth is achieved.

4.2 PM performance within a SMP
node

Figure 6 shows bandwidth within a node using
MPICH-PM/CLUMP. This is the result on clus-
ter of 32 Dual Intel Pentium II 330 MHz proces-
sors since a RWC PC Cluster II node is a single
processor.

The figure contains the result of i) two
MPICH-PM/CLUMP implmentations, 2-copies
using the shared memory and 1-copy using the
PM driver, and ii) MPICH 1.1 shared mem-
ory implementation called lfshmem which is in-
cluded in the MPICH 1.1 distribution. The fig-
ure also includes the performance of the PM 1-
copy facility.



0

20

40

60

80

100

120

140

1 10 100 1000 10000 100000 1e+06

B
an

dw
id

th
 (

M
B

/s
)

Message Size (bytes)

MPICH-PM/CLUMP Eager Protocol (2-copy)
MPICH-PM/CLUMP Get Protocol (1-copy)

MPICH 1.1 (lfshmem)
PM 1-copy

Figure 6: Bandwidth within Node using
MPICH-PM/CLUMP

The actual MPICH-PM/CLUMP incorporates
with two implementations, 1-copy and 2-copies,
to achieve the maximum performance. Thus,
the performance results show that 8.62 micro
seconds latency and 100 MBytes/sec maximum
bandwidth is achieved. MPICH-PM/CLUMP is
better performance than the MPICH 1.1 lfsh-
mem implementation when the message size is
larger than 400 Bytes.

4.3 NAS parallel benchmarks result

NAS Parallel benchmarks have been used to
evaluate the RWC PC Cluster II and compare it
with other systems including Cray T3E and SGI
O2K. The results show that it is the comparable
performance of such supercomputers.

Due to the paper length limita-
tion, the results cannot be presented in
this paper. Visit the following URL:
http://www.rwcp.or.jp/lab/pdslab/benchmarks/
npb2.3/980903/

5 Related Works

Beowulf[10] is a collection of device drivers and
tools for parallel programming on top of the

TCP/IP protocol. Unlike the SCore cluster sys-
tem software, it does not support a high perfor-
mance communication library such as PM.

There are several user-level communica-
tion implementations such as Active Messages
(AM)[2], Fast Messages (FM)[9], BIP[3], and
U-Net[14]. There is a paper evaluating and com-
paring AM, FM, BIP, and PM[4]. According
to the paper, PM realizes better communication
functionality with good performance.

AM, FM, and BIP supports MPI implemen-
tations. MPI-AM is running on cluster of Sun
machines. Both MPI-FM and MPI-BIP are run-
ning on a Linux-based cluster. As long as we
know, MPICH-PM/CLUMP is only utilizing a
cluster of multiprocessors without changing a
legacy MPI program.

6 Concluding Remarks

This paper contributes to the Linux users to
demonstrate that a high performance parallel
system can be built using PCs with a Myri-
com myrinet network. The RWC PC Clus-
ter II and its software environment, called the
SCore Cluster system software, are an example
of a compact and well maintainable PC cluster
using Linux. The SCore cluster system soft-
ware is also running on a Compaq Alpha 21164
processor-based cluster.

The SCore cluster system software on top
of Redhat 5.1 and Redhat 5.2 is currently
distributed freely via the following URL:
http://www.rwcp.or.jp/lab/pdslab/dist/

The distribution includes a cookbook for
building your own PC cluster, which describes
an instruction to order machines and configure
the system.



References

[1] http://www.picmg.com.

[2] http://now.cs.berkeley.edu/AM/lamrelease.html.

[3] http://lhpca.univ-lyon1.fr/bip.html.

[4] Soichiro Araki, Angelos Bilas, Cezary
Dubnicki, Jan Edler, Koichi Konishi, and
James Philbin. User-space communica-
tion: A quantitative study. InSC98: High
Performance Networking and Computing
Conference, 1998.

[5] Atsushi Hori, Hiroshi Tezuka, and Yutaka
Ishikawa. Highly Efficient Gang Schedul-
ing Implementation. InSC’98, November
1998.

[6] Yutaka Ishikawa. Multi Thread Tem-
plate Library – MPC++ Version 2.0
Level 0 Document –. Technical Re-
port TR–96012, RWC, September
1996. This technial report is obtained via
http://www.rwcp.or.jp/lab/mpslab/mpc++/mpc++.html.

[7] N. J. Boden, D. Cohen, R. E. Felderman,
A. E. Kulawik, C. L. Seitz, J. N. Seizovic
and Wen-King Su. “Myrinet – A Gigabit-
per-Second Local-Area Network”.IEEE
MICRO, 15(1):29–36, February 1995.

[8] Francis O’Carroll, Hiroshi Tezuka, At-
sushi Hori, and Yutaka Ishikawa. The
Design and Implementation of Zero Copy
MPI Using Commodity Hardware with a
High Performance Network. InInterna-
tional Conference on Supercomputing ’98,
pages 243–250, July 1998.

[9] Scott Pakin, Mario Lauria and Andrew
Chein. “High Performance Messaging on
Workstations: Illinois Fast Messages (FM)
for Myrinet”. In Proceedings of Supercom-
puting ’95, San Diego, California, 1995.

[10] T. Sterling, D. J. Becker, D. Savarese,
M. R. Berry, C Reschke. “Achieving a
Balanced Low-Cost Architecture for Mass
Strage Management through Multiple Fast
Ehternet Channels on the Beowulf Parallel
Workstation”. InProceedings of the 10th
International Parallel Processing Sympo-
sium, April 1996.

[11] Tosiyuki Takahashi, Yutaka Ishikawa, Mit-
suhisa Sato, and Akinori Yonezawa. A
compile-time meta-level architecture sup-
porting class specific optimization. InSci-
entific Computing in Object-Oriented Par-
allel Environment, ISCOPE’97, volume
1343 of Lecture Notes in Computer Sci-
ence, pages 89–96, 1997.

[12] Hiroshi Tezuka, Atsushi Hori, Yutaka
Ishikawa, and Mitsuhisa Sato. PM: An Op-
erating System Coordinated High Perfor-
mance Communication Library. InHigh-
Performance Computing and Networking
’97, 1997.

[13] Hiroshi Tezuka, Francis O’Carroll, At-
sushi Hori, and Yutaka Ishikawa. Pin-
down Cache: A Virtual Memory Manage-
ment Technique for Zero-copy Communi-
cation. InIPPS/SPDP’98, pages 308–314.
IEEE, April 1998.

[14] Thorston von Eicken, Anindya Basu, and
Werner Vogels. U-Net: A User Level Net-
work Interface for Parallel and Distributed
Computing. InFifteenth ACM Sumposium
on Operating Systems Principles, pages
40–53, 1995.


