RWC PC Cluster Il and SCore Cluster System Software
— High Performance Linux Cluster —

Yutaka Ishikawa Hiroshi Tezuka AtsushiHori Shinji Sumimoto
Toshiyuki Takahashi Francis O’'Carroll Hiroshi Harada

Real World Computing Partnership
{ishikawa, tezuka, hori, s-sumi, tosiyuki, ocarroll, h-harfg@awcp.or.jp
http://www.rwcp.or.jp/lab/pdslab/

ABSTRACT 1 Introduction

Many high performance clustering research
projects, using commodity hardware with high-
speed networks, have been widely investigated.
Our distinguished approach to realizing such a
The RWC PC Cluster Il, consisting of 128 Ineluster system is to design and develop i) a com-
tel Pentium Pro microprocessors connected bpact and well maintainable PC-based cluster and
Myricom Myrinet giga-bit network, achieves théi) a total system software architecture on top of
comparable speed of a super computer suchaasommodity operating system, Linux, without
Cray T3E. Its system software called the SCoamy kernel modifications but adding a driver to
cluster system software is built on top of Linukhe kernel.
without any kernel modifications but adding a The RWC PC Cluster Il is the second gen-
driver to the kernel. The SCore Cluster systegiation of our PC cluster, which consists of
software consists of the user-level communica28 Intel Pentium Pro 200 MHz microproces-
tion facility called PM using a Myricom Myrinetsors connected by a Myricom Myrinet giga-bit
giga-bit network, a communication library MPhetwork[7]. To make the system compact and
on top of PM, a parallel programming languaggell maintainable, we employ the PICMG PCI-
system called MPC++, and a global operatingA passive backplane standard[1].
system called SCore-D. The SCore cluster system software is our
(%Iuster system software running on top of Linux.

This paper shows that a compact and w p realize the high performance system using

maintainable PC cluster using Linux can be bui

and its performance is the comparable Supceqmmodlty hardware and software, the follow-

computer power. The key technology to rea’d key technologies have been employed:

ize high performance communication is intro-
e a user-level zero-copy message transfer

duced, i.e., so-called zero copy message trans- .
mechanism between nodes and one copy

fer between nodes and one copy message trans-) -
o . : message transfer mechanism within a node
fer within a node realized in the PM kernel-level . L
by a high performance communication fa-

driver. cility called PM,

called MPICH-PM/CLUMP that integrate Il [IDH |
both zero-copy message transfer and ma]iijiijii] =
sage passing facilities in order to maximiz i E
performance, and ol

e a high performance MPI implementatiol

T E
e a multi-user environment using gan i E

scheduling without degrading the comm]fifi[fififfi
nication performance realized by an opeft——4
ating system daemon called SCore-D. PC Cluster Stack of PCs

I MGEEIN (GERIN GERN (GE
I DGERIN (GERIN GERN (G

In this paper, first, RWC PC Cluster Il and Figure 1. PC Cluster and a Stack of PCs
the SCore cluster system are introduced to show
that a compact and well maintainable PC clus-
ter using commodity hardware can be built on
top of Linux. Since the PM kernel-level driver'syrs Groupy.

functionality is significant to realize high per- The PCI-ISA passive backplane does not in-
formance on top of Linux, section 3 introduce

. _ Clude any active devices which are normally lo-
the PM kernel-level driver. The driver SUPPOItS,iad on a motherboard. Instead, a PICMG pro-

so-called zero copy message transfer b?t"v_%‘ae'%sor board contains all active devices. The

of the communication facility is evaluated. Re;4 has a much lower mean time to repair, and
lated works are presented in section 5. i) it is easy to upgrade to the latest processor
technology. Those advantages are very useful in

. constructing a cluster of PCs. Figure 1 depicts
2 An Overview of RWC PC comparison with our system and a stack of PCs.

Cluster Il Figure 2 shows node components: a PICMG
Pentium Pro 200 MHz processor card, a 4
21 Hardware GBytes local disk, a 100 Base-T network card,

and a Myrinet[7] giga-bit network card. Those

The easiest way to build a PC cluster is wards are plugged into the PCI-ISA passive
stack off-the-shelf PCs into a rack and conndeackplane. Two nodes are packed into one mod-
them. This method makes possible a cheale. As shown in Figure 3, the RWC PC clus-
parallel machine composed of commodity harter Il has four cabinets each of which contains
ware components. It, however, requires a lot 86 modules and one monitor PC. The 32 pro-
space and suffers from maintenance problemsessor’s serial lines are connected to one moni-
The RWC PC Cluster Il was designed to
make the system compact and easily maintain-lPICMG is a consortium of over 359 industrial
mputer product vendors who collaboratively develop

able unlike the example above. We use the I:)@E'ecifications for PCl-based systems and boards for

ISA passive backplane standard specified by th® in industrial and telecommunications computing
PICMG (PCI Industrial Computer Manufacturapplications[1].

Table 1: RWC PC Cluster Il Specification

Number of Processors 128
Processor Pentium Pro
Clock [MHZ] 200
Cache [KB] 512
Memory [MB] 256

I/O Bus PCI
Local Disk 4GB IDE
Network Myrinet

tor PC. Thus, the system has 128 Intel Pentium
Pro processors. Table 1 summarizes the system
specifications.

2.2 An Overview of SCore Cluster
System Software

The high performance computing environment
on the RWC PC Cluster Il cannot be real-
ized without the SCore cluster system software
on top of Linux. The SCore System soft-
ware consists of a communication facility called
PM, MPI implemented on PM called MPICH-
PM/CLUMP, a global operating system called
SCore-D, and a multi-threaded programming
language called MPC++.

221 PM

To achieve a low latency and high band-
width communication, PM directly accesses the
Myrinet network interface to eliminate kernel

There are three PCs and four displays in tHE2PS and data copies between kernel and user
front of the cluster. You will imagine how RwEPaces[12]. PM consists of a user-level library,

PC Cluster Il is small.

Figure 3: RWC PC Cluster Il

a kernel-level driver, and a communication pro-
tocol handler on the Myrinet network hardware.
The PM Kkernel-level driver initializes the
Myrinet network interface and maps the SRAM
of the interface to the user address space so that

the PM user-level library directly accesses fihis issue and achieves good performancel8].
Since the PM communication facility is realized MPICH-PM/CLUMP, the successor of
without involving a kernel routine, such a facilMPICH-PM, supports a cluster of multipro-
ity is called a user-level communication facilitycessors or called CLUMP. Using MPICH-
PM realizes not only message passing bemM/CLUMP, The MPI legacy programs run
also a remote memory write facility or so-calledn CLUMP without any modifications. For
zero copy message transfer to provide higixample, suppose a CLUMP consisting of 16
bandwidth communication. In zero copy mestodes each of which contains dual proces-
sage transfer, a message is transferred usingsbes. MPICH-PM/CLUMP provides an MPI
DMA facility of the Myrinet network without application with 32 processors or 32 processes.
any memory copy operation by the host proceSemmunication between two processes on
sor. Since the DMA facility accesses the phydiifferent nodes is realized by the PM com-
cal memory address space, user virtual memaonynication facility using a Myrinet network.
must be pinned down to a physical memory Iddessage transfer between two processes on one
cation before the message is transferred. If eaadde is handled by the PM kernel-level driver
message transfer involves pin-down and release that one copy message transfer is realized.
kernel primitives, message transfer bandwidithe PM kernel-level driver will be discussed in
will decrease since those primitives are quite exection 3.
pensive. We have proposed and implemented
a zero copy message transfer witlpia-down
cachetechnique which reuses the pinned-down?-3 SCore-D

area to decrease the number of calls to pin-dowfle gcore-p global operating system is imple-
and release primitives[13]. _mented as a set of daemon processes on top
The PM kernel-level driver implements pingt 5 ynix operating system without any kernel
down and release primitives since theock o ification[5]. To utilize processor resources
andmunlock primitives are only available un-5nq to enable an interactive programming en-
der the super user mode. The PM kernel-le\@lonment, parallel processes are multiplexed

driver will be discussed in section 3. in processors’ space and time domains simulta-
neously under SCore-D. Parallel processes are
222 MPICH-PM/CLUMP gang-scheduled when multiplexed in the time

domain. It has been proved that the SCore-D
When a message passing library such as MJng scheduler overhead is less than 4 % of the
is implemented on top of a lower level comtotal application execution time[5].
munication facility that supports the zero copy To realize gang scheduling under a commu-
message transfer primitive, the message pasisation layer which accesses the network hard-
ing library must handle the pinned-down menware directly, the network hardware status and
ory area which is a restricted quantity resouroeessages inflight on the network must be saved
under a paging memory system. Allocation @nd restored when switching to another paral-
pinned-down memory by multiple simultaneous| process. This mechanism is called network
requests for sending and receiving without @meemption. By co-designing PM and SCore-D,
control can cause deadlock. MPICH-PM, bas#étke network preemption technique has been de-
on the MPICH implementation, has overcomesloped.

2.2.4 MPC++ erations. The amount of total pinned-down area
MPC4++ Version 2 is desianed in two level is restricted to each process so that the physical
ersion 2 Is designed In two leve Smemory is not exhausted.

level 0 and level 1. Level O, called Multi-Thread . .
. o The pindown/release operations are not spe-
Template Library (MTTL), specifies parallel de-.)
e - : cial requirements of PM. Rather, those are re-
scription primitives realized by the C++ tem- . = e
: ._quired if a zero copy message transfer is imple-
plate feature without any language extensmr%. .)
: T : meéented using some I/O card which has a DMA
It provides remote function invocation, synchr%ICiIit
nization structure, and remote memory access Y
facilities[6] .
Level 1 SpeCifieS the MPC++ meta'lev%_z 1_Copy message transfer Support
architecture which enables library designers
to provide an optimizer specific to theiOne copy message transfer between processes
class/template library in the library headeyn a multiprocessor might be realized using the
file[11]. The library user may use such a higshared memory facility. This is true if the pro-
performance library by including the header fileesses explicitly allocate the shared region and
accesses the region. However, a communication
. library such as MPI using the shared memory
3 PM Kernel-level Driver facility involves two times message copies since
the user-level communication area is used with-

The PM kernel-level driver initializes thepyt respect to the shared memory region. Fol-
Myrinet network interface and maps the SRA%W”‘]g is the typ|Ca| scenario:

area of the interface to the user address space.

Moreover, the driver supports pin-down and re-1. The communication library copies the

lease primitives for a zero copy message trans- sender’s data to the shared area in the
fer using the Myrinet interface and one copy sender process.

message transfer mechanism for communication
within a node. Those functionalities are pro-2. After the receive primitive is posted, the

vided by theioctl command of the driver. communication library copies data from
the shared area to the receiver's memory
3.1 Pin-down/release operation areain the receiver process.

As described in section 2.2.1, a zero copy mes-To realize one copy message transfer, mem-
sage transfer is realized by using the DMA facibry write to another process’s memory area or
ity of the Myrinet interface which requires thenemory read from another process’s memory
physical memory address. Linux kernel primarea must be required. In the PM kernel-level
tive mlock provides that user virtual memonyriver, the process’s memory read function is
is pinned down to a physical memory locatiosupported because it has less risk than the pro-
while themunlock primitive is to release thecess’s memory write function. The process’s
pinned down area. However, those are ontyemory read is only available for processes that
available under the super user mode. have the parent/child relation. The following is

The PM kernel-level driver implements théhe typical scenario of one copy message trans-
same functionality ofnlock andmunlock op- fer:

120 120

100 H #—(copy(100% hit) ".‘ 100 |+ ——0 copy(100% hit) i
0 copy(0% hit) / - —8—0 copy(0% hit)

|| —e— msg+copy &g 80 msg+copy

=2

=

! 6

E

=

=l

<

&

M 40 ﬁ-ﬂdv’lf - |
20 / 2 ; 2
0 e ‘ ‘ ‘ ‘ 0o L

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1. E+06 1.E+07
1E+00 LE+01 1.E+q% 1.E+QB 1.E+04 1E+05 1E+06 1.E+07 .
ata S1ze (bytes Data size (bytes)

®
@)

?\\

[e2}
o

o
)

Bandwidth (MB/s)

~J

Figure 4: PM Bandwidth between Nodes Figure 5: Bandwidth between Nodes using
MPICH-PM/CLUMP

1. The communication library in the sender
process informs the receiver that the sendFigure 5 shows bandwidth between nodes us-
data is ready. ing MPICH-PM/CLUMP. Since the PM mes-
sage passing facility is better performance than
2. After the receive primitive is posted in thégne PM zero copy facility in case of less than
receiver process and the sender informs tBeKbytes message, a message of less than
data ready, the communication library 08 Kbytes uses the message passing facility
the receiver reads the send data and stoggsile a message greater than 8 Kbytes uses
it to the receiver's memory area. the zero copy facility. The performance results
show that 13.16 micro seconds latency and 104
_ MBytes/sec maximum bandwidth is achieved.
4 Evaluation

4.1 PM performance between nodes#2 PM performance within a SMP

: node
Figure 4 shows that the PM data transfer band-

width using the RWC PC cluster Il. The maxFigure 6 shows bandwidth within a node using
imum bandwidth is 113.5 MBytes/sec for 2581PICH-PM/CLUMP. This is the result on clus-
KBytes in the case of 100 % pin-down cache hir of 32 Dual Intel Pentium Il 330 MHz proces-
ratio. 100 % pin-down cache hit ratio means thatrs since a RWC PC Cluster Il node is a single
all data area is pinned down and never callifgocessor.
the PM kernel-level driver to pindown an area. The figure contains the result of i) two
In the case where the pin-down cache is ddPICH-PM/CLUMP implmentations, 2-copies
ways miss, the maximum bandwidth is still 78.dsing the shared memory and 1-copy using the
MBytes/sec which is still higher than the band®M driver, and ii) MPICH 1.1 shared mem-
width of data transfer with data copy, i.e., usry implementation called Ifshmem which is in-
ing the PM message passing facility. PM alssuded in the MPICH 1.1 distribution. The fig-
achieves a low latency, 7 /& seconds one-wayure also includes the performance of the PM 1-
latency. copy facility.

140 [MPICH-PMICLUMP Eager Prototol (2-copy) ——] TCP/IP protocol. Unlike the SCore cluster sys-

MPICH-PM/CLUMP Get Protocol (1-copy) =-=-=-----

120 MPICH 1.1 (fshmer) -] tem software, it does not support a high perfor-
mance communication library such as PM.

100

80

There are several user-level communica-
tion implementations such as Active Messages
(AM)[2], Fast Messages (FM)[9], BIP[3], and

e | | | U-Net[14]. There is a paper evaluating and com-
00 100000 1100 paring AM, FM, BIP, and PM[4]. According
to the paper, PM realizes better communication

Figure 6: Bandwidth within Node usingfuncuona“tyW'th good performance.

MPICH-PM/CLUMP AM, FM, and BIP supports MPI implemen-
tations. MPI-AM is running on cluster of Sun
machines. Both MPI-FM and MPI-BIP are run-
ning on a Linux-based cluster. As long as we

The actual MPICH-PM/CLUMP incorporate&now, MPICH-PM/CLUMP is only utilizing a
with two implementations, 1-copy and 2-copie§!USter of multiprocessors without changing a
to achieve the maximum performance. Thu€9acy MPI program.
the performance results show that 8.62 micro
seconds latency and 100 MBytes/sec maximum
bandwidth is achieved. MPICH-PM/CLUMP is
better performance than the MPICH 1.1 IfslB
mem implementation when the message sizes
larger than 400 Bytes.

Bandwidth (MB/s)

60

40

20

Concluding Remarks

This paper contributes to the Linux users to
4.3 NAS parallel benchmarks result demonstrate that a high performance paraI.IeI
system can be built using PCs with a Myri-
NAS Parallel benchmarks have been used dom myrinet network. The RWC PC Clus-
evaluate the RWC PC Cluster Il and comparetdr 1l and its software environment, called the
with other systems including Cray T3E and S&Core Cluster system software, are an example
O2K. The results show that it is the comparabi# a compact and well maintainable PC cluster
performance of such supercomputers. using Linux. The SCore cluster system soft-
Due to the paper length limitaware is also running on a Compaq Alpha 21164
tion, the results cannot be presented processor-based cluster.

this paper. Visit the following URL: 1o geore cluster system software on top
http://www.rwcp.or.Jp/Iab/pdsIab/benchmarks/of Redhat 5.1 and Redhat 5.2 is currently

npb2.3/980903/ distributed freely via the following URL:
http://www.rwcp.or.jp/lab/pdslab/dist/

5 Related Works The distribution includes a cookbook for

building your own PC cluster, which describes
Beowulf[10] is a collection of device drivers anén instruction to order machines and configure
tools for parallel programming on top of thé¢he system.

References

[1]

[2] http://now.cs.berkeley.edu/AM/lamelease.html

[3]
[4]

http://www.picmg.com.

http://lhpca.univ-lyon1.fr/bip.html.

Soichiro Araki, Angelos Bilas, Cezary
Dubnicki, Jan Edler, Koichi Konishi, and
James Philbin.
tion: A quantitative study. I'£C98: High
Performance Networking and Computing
Conference1998.

[5] Atsushi Hori, Hiroshi Tezuka, and Yutaka

[6] Yutaka Ishikawa.

[7]

[8]

[9]

Ishikawa. Highly Efficient Gang Schedul-
ing Implementation. I'6C’98 November
1998.

Multi Thread Tem
plate Library — MPC++ \ersion 2.0
Level 0 Document — Technical Re-
port TR-96012, RWC, September
1996. This technial report is obtained via

[10] T. Sterling, D. J. Becker, D. Savarese,

M. R. Berry, C Reschke. “Achieving a
Balanced Low-Cost Architecture for Mass
Strage Management through Multiple Fast
Ehternet Channels on the Beowulf Parallel
Workstation”. InProceedings of the 10th
International Parallel Processing Sympo-
sium April 1996.

User-space communicitl] Tosiyuki Takahashi, Yutaka Ishikawa, Mit-

suhisa Sato, and Akinori Yonezawa. A
compile-time meta-level architecture sup-
porting class specific optimization. Bci-
entific Computing in Object-Oriented Par-
allel Environment, ISCOPE’97 volume
1343 of Lecture Notes in Computer Sci-
ence pages 89-96, 1997.

[12] Hiroshi Tezuka, Atsushi Hori, Yutaka

Ishikawa, and Mitsuhisa Sato. PM: An Op-
erating System Coordinated High Perfor-
mance Communication Library. IHigh-

Performance Computing and Networking

http://www.rwcp.or.jp/lab/mpslab/mpc++/mpc;9r7.h1]rﬁlg7'
N. J. Boden. D. Cohen. R. E. Feldermaml3] Hiroshi Tezuka, Francis O'Carroll, At-

A. E. Kulawik, C. L. Seitz, J. N. Seizovic
and Wen-King Su. “Myrinet — A Gigabit-
per-Second Local-Area Network”lEEE
MICRO, 15(1):29-36, February 1995.

Francis O’Carroll, Hiroshi Tezuka, At-
sushi Hori, and Yutaka Ishikawa.
Design and Implementation of Zero Copy
MPI Using Commodity Hardware with a
High Performance Network. linterna-
tional Conference on Supercomputing,98
pages 243-250, July 1998.

Scott Pakin, Mario Lauria and Andrew
Chein. “High Performance Messaging on
Workstations: lllinois Fast Messages (FM)
for Myrinet”. In Proceedings of Supercom-
puting ‘95, San Diego, Californial995.

Thél4]

sushi Hori, and Yutaka Ishikawa. Pin-
down Cache: A Virtual Memory Manage-
ment Technique for Zero-copy Communi-
cation. InIPPS/SPDP’98pages 308—-314.

|EEE, April 1998.

Thorston von Eicken, Anindya Basu, and
Werner Vogels. U-Net: A User Level Net-
work Interface for Parallel and Distributed
Computing. InFifteenth ACM Sumposium
on Operating Systems Principlepages
40-53, 1995.

