
A Study of High Performance Communication

Using a Commodity Network of Parallel Computers

2000

Shinji Sumimoto

2

3

THE SUMMARY OF PH.D DISSERTATION

The increasing demands of information processing requires parallel comput-

ers using a number of computers connected with a high performance communi-

cation network.

Ten years ago, such a parallel computer could not be built without dedicated

hardware. However, dramatic breakthroughs in the areas of microprocessor

and computer network technology for personal computers (PCs) have made

a parallel computer consisting of commodity PCs with high speed network

possible. This parallel computer is able to achieve performance comparable

to that of commercially available dedicated parallel computers. This kind of

parallel computer is often called a \cluster system."

However, existing communication facilities on a commodity network with

a cluster system use mainly the TCP/IP protocol. The TCP/IP protocol can

not ensure the maximum communication performance of network hardware.

The �rst purpose of this dissertation is to propose implementation designs

which ensure the maximum communication performance on cluster systems

using Gigabit Ethernet, one of the next generation of commodity networks.

The second purpose of this dissertation is to show that communication using

Gigabit Ethernet can achieve performance of application programs (application

performance) comparable to that of dedicated cluster network communication.

To realize the �rst purpose, there are two types of approaches: approaches

using hardware dependent designs, and approaches using hardware independent

designs using existing network interface cards (NIC). In this dissertation, com-

munication facilities using both of these approaches are designed, implemented,

and evaluated.

The following hardware dependent designs are proposed: a reliable light-

4

weight communication protocol called "GoBack-N for PM" and design tech-

niques which minimize information exchange cost based on a cost analysis of

TCP/IP. There are signi�cant design choices: where should a communication

protocol be processed, in the host CPU or the NIC CPU; and where should

the data structures for managing the send and receive bu�ers and triggering be

allocated, on the host or the NIC memory. Since those structures are shared

resources, the cost between host and NIC information exchange is crucial in

performance.

The GigaE PM communication facility has been implemented using these

designs on the Essential Gigabit Ethernet NIC. The performance benchmark

results show that the communication bandwidth of GigaE PM is 1.7 times faster

than that of the existing TCP/IP protocol, and the round trip time of GigaE

PM is about one third that of TCP/IP. Therefore, the proposed method is

e�ective in realizing high performance communication on Gigabit Ethernet.

In hardware independent designs, a design method to reduce reliable pro-

tocol processing overhead is proposed. The method is based on the results of a

cost analysis of existing TCP/IP processing overhead. According to the analy-

sis, the interrupt overhead caused performance degradation in addition to that

of the TCP/IP protocol processing overhead. In order to eliminate the interrup-

t overhead, a communication protocol processing method has been proposed.

This method does not use a software interrupt as existing protocols do. And the

Interrupt Reaping technique has also been proposed. This technique eliminates

the use of a hardware interrupt without modi�cation of existing device drivers.

The PM/Ethernet communication facility has been implemented using these

techniques on the Packet Engines G-NIC II Gigabit Ethernet NIC. The per-

formance benchmark results show that the communication bandwidth of P-

M/Ethernet is 1.6 times faster than that of the existing TCP/IP protocol, and

the round trip time of PM/Ethernet is about one third that of TCP/IP. These

results show that proposed method is e�ective in eliminating two thirds of the

TCP/IP processing cost.

As another hardware independent design, the Network Trunking technique

5

has been developed. It improves communication bandwidth using multiple NIC-

s. The communication performance benchmark results show that the bandwidth

performance of PM/Ethernet with four digital 100 BaseT NICs is 3.6 times

faster than that with one 100 BaseT NIC.

To show that communication using Gigabit Ethernet achieves application

performance comparable to that of dedicated cluster network communication,

a communication facility which supports both a dedicated cluster network and

a commodity network is used. As a result of the evaluation using the NAS par-

allel benchmarks, the performance of the IS benchmark on PM/Ethernet using

Gigabit Ethernet achieves performance comparable to that on PM/Myrinet on

a 16 node cluster. This result shows that practical high-performance cluster

systems can be built using a commodity network.

Using the proposed method described above, it has been shown that a

cluster system using a commodity network can achieve performance comparable

to that of a cluster systems using a dedicated cluster network. It is expected

that cluster systems using a commodity network will become more popular very

soon.

Acknowledgement

I was given very valuable and insightful advice from Professor Norihisa Doi, Professor

Kenichi Harada, and Professor Takashi Nodera. I would also like to thank Professor Hide-

haru Amano for his invaluable advice and warm support.

This thesis was completed while I was working at Real World Computing Partnership

(RWCP). The head of RWCP, Dr. Junichi Shimada, gave me enough opportunities for

research to last many years. Dr. Yutaka Ishikawa, the leader of the Parallel Distributed

System Software Laboratory of RWCP kindly guided the author, who was very inexperi-

enced, in the �rst tentative steps towards new technology. My interest was kindled by his

passion for study.

It would not be possible to develop a high performance communication facility for a

commodity network without the SCore Cluster System Software which was developed by

Dr. Atushi Hori, Mr. Hiroshi Tezuka, Mr. Hiroshi Harada and Mr. Toshiyuki Takahashi,

researchers at the Parallel Distributed System Software Laboratory of RWCP.

I would like to thank Dr. Mitsuhisa Sato, the leader of the Parallel Distributed Sys-

tem Performance group at RWCP, and Dr. Tomohiro Kudoh, the leader of the Parallel

Distributed System Architecture group at RWCP for their warm advice and vast store of

knowledge of parallel computation and system architecture.

Mr. Noriyuki Soda of SRA Co., Ltd. gave a lot of advice on the basis of abundant

Unix programming experience. Thanks to Mr. Toyohisa Kameyama, and Mr. Hiroshi

Futsuhara, I found a comfortable program development environment ready.

I would like to express my appreciation for support from many people in Fujitsu, Ltd. and

Fujitsu Laboratories, Ltd., especially Research Institute Managing Director, Mr. Hiromu

Hayashi, Managers, Mr. Akira Jinzaki and Dr. Yasunori Kimura.

Last, and most important, I thank my dear wife Satoko and my sons Yuji and Koji, for

continuous heartfelt support.

i

Contents

1 Introduction 1

1.1 The Need for Parallel Processing and Cluster Systems : : : : : : : : : : : : 2

1.2 Issues in Cluster Systems Using Commodity Networks : : : : : : : : : : : : 3

1.3 The Purposes of This Thesis : 4

1.4 Overview of This Thesis : 5

1.5 Contributions : 5

2 Background 7

2.1 History of Commodity Hardware : 8

2.2 The History of Massively Parallel Computers : : : : : : : : : : : : : : : : : 12

2.3 Standardization of the Parallel Application Programming Environment : : 13

2.4 A History of Cluster Computing : 14

2.4.1 Cluster Computing Using Commodity Networks in the Early 1990s 15

2.4.2 Cluster Computing Using Dedicated Cluster Networks : : : : : : : 16

2.4.3 Cluster Computing Using Commodity Networks in the Late 1990s : 21

2.5 Issues of Cluster Computing on Gigabit Class Commodity Networks : : : : 21

2.6 Summary of This Chapter : 22

3 The RWC Project 24

3.1 The RWC Project : 25

3.2 SCore Cluster System Software : 25

3.2.1 A Low Level Communication Facility: PM : : : : : : : : : : : : : : 27

3.2.2 A Multi-Threaded Language: MPC++ : : : : : : : : : : : : : : : : 29

3.2.3 The MPICH-PM Communication Library : : : : : : : : : : : : : : 29

i

ii CONTENTS

3.2.4 SCore-D : 30

3.2.5 SCASH : 30

3.3 The Cluster System Hardware Platform : 30

3.3.1 RWC PC Cluster II : 31

3.3.2 RWC SCore Cluster I : 32

3.3.3 RWC SCore Cluster II : 33

3.3.4 Application Performance on RWC Clusters : : : : : : : : : : : : : : 34

3.4 The SCore Software on Commodity Networks : : : : : : : : : : : : : : : : 35

3.5 Summary of This Chapter : 36

4 Hardware Dependent Designs 37

4.1 Network Protocols and NICs : 38

4.1.1 Cost Estimation : 38

4.1.2 Discussion : 40

4.2 Design Objectives of GigaE PM : 40

4.3 GigaE PM Design : 41

4.3.1 Virtual Networks and API : 41

4.3.2 Where Should a Communication Protocol be Processed? : : : : : : 42

4.3.3 Reliable Communication : 42

4.3.4 Information Exchange between the Host and the NIC : : : : : : : : 43

4.3.5 Host CPU Polling e�ects on PCI DMA transfer : : : : : : : : : : : 45

4.4 GigaE PM Implementation : 47

4.4.1 Overview of the GigaE PM Implementation : : : : : : : : : : : : : 47

4.4.2 Overview of GigaE PM Message Handling : : : : : : : : : : : : : : 48

4.4.3 TCP/IP and Other Protocol Support : : : : : : : : : : : : : : : : : 49

4.4.4 Comparison of Cost and Bu�er Usage : : : : : : : : : : : : : : : : : 49

4.5 GigaE PM Evaluation : 50

4.5.1 Evaluation Environment : 51

4.5.2 PM Bandwidth : 51

4.5.3 PM Round Trip Latency : 51

CONTENTS iii

4.5.4 NAS Parallel Benchmarks : 52

4.6 Related Work of GigaE PM : 53

4.7 Conclusions of This Chapter : 55

5 Hardware Independent Designs 57

5.1 Design Objectives of Cluster Communication : : : : : : : : : : : : : : : : : 58

5.2 TCP/IP Protocol Processing Overhead : 58

5.2.1 Performance in Protocol Layers : 59

5.2.2 TCP/IP Protocol Processing Overhead Analysis : : : : : : : : : : : 60

5.3 A Protocol Handling Scheme Design : 62

5.3.1 Protocol Handling for Cluster Computing : : : : : : : : : : : : : : 62

5.3.2 A Light-weight Reliable Communication Protocol : : : : : : : : : : 62

5.3.3 The Interrupt Reaping Technique : : : : : : : : : : : : : : : : : : : 63

5.3.4 Cluster Communication and Existing Network Protocols : : : : : : 64

5.3.5 Interrupt Reaping and Existing Network Protocols : : : : : : : : : 64

5.4 Implementation of PM/Ethernet : 66

5.4.1 PM/Ethernet Architecture : 66

5.4.2 Implementation on Linux : 66

5.4.3 Implementation of Interrupt Reaping : : : : : : : : : : : : : : : : : 68

5.4.4 Multi processes and SMP Support : : : : : : : : : : : : : : : : : : : 69

5.5 Evaluation : 69

5.5.1 Basic Application Level Communication Performance : : : : : : : : 69

5.5.2 NAS Parallel Benchmarks (NPB) : : : : : : : : : : : : : : : : : : : 70

5.5.3 The E�ect of the Interrupt Reaping Technique : : : : : : : : : : : : 72

5.5.4 PM/Ethernet Protocol Processing Cost Analysis : : : : : : : : : : : 74

5.6 Related Work of PM/Ethernet : 75

5.7 Conclusions of This Chapter : 75

6 Software Techniques Using Multiple NICs 77

6.1 Network Trunking Design : 78

6.1.1 Characteristics of Ethernet Switch : : : : : : : : : : : : : : : : : : 78

iv CONTENTS

6.1.2 The Beowulf Channel Bonding Technique : : : : : : : : : : : : : : : 78

6.1.3 Proposing the Network Trunking Technique : : : : : : : : : : : : : 79

6.2 Network Trunking Facility Implementation : : : : : : : : : : : : : : : : : : 80

6.3 Evaluation of Network Trunking : 82

6.3.1 PM level Communication Performance : : : : : : : : : : : : : : : : 82

6.4 Conclusions of This Chapter : 84

7 Comparison of Application Performance 86

7.1 Cluster of Clusters : 87

7.2 PMv2 Design : 88

7.2.1 COC and SMP Cluster Support : 88

7.2.2 Communication Architecture for Multiple Networks : : : : : : : : : 89

7.2.3 Support of Hardware Speci�c Communication : : : : : : : : : : : : 91

7.2.4 PMv2 APIs : 91

7.2.5 Implementation Techniques for PM Devices : : : : : : : : : : : : : 93

7.3 PMv2 Implementation : 93

7.3.1 Overview of the PMv2 Implementation : : : : : : : : : : : : : : : : 93

7.3.2 SCore Version 3 and MPICH/SCore on PMv2 : : : : : : : : : : : : 95

7.4 Evaluation on RWC SCore Cluster I : 96

7.4.1 Basic Communication Performance on PM/Myrinet, PM/Ethernet : 97

7.4.2 PM/Shmem Round Trip Time and PM/Composite Overhead : : : : 99

7.4.3 Basic MPI Communication Performance on PM/Myrinet, PM/Ethernet101

7.4.4 NAS Parallel Benchmark Results : : : : : : : : : : : : : : : : : : : 102

7.4.5 Application Performance on an SMP Cluster : : : : : : : : : : : : : 105

7.4.6 Summary of Results on SCore Cluster I : : : : : : : : : : : : : : : : 106

7.5 Evaluation on RWC SCore Cluster II : 109

7.5.1 Basic PM Communication Performance : : : : : : : : : : : : : : : : 109

7.5.2 Application Performance on RWC SCore Cluster II : : : : : : : : : 110

7.5.3 Summary of Results on SCore Cluster II : : : : : : : : : : : : : : : 111

7.6 Evaluation on RWC PC Cluster II : 113

CONTENTS v

7.6.1 Summary of Results on PC Cluster II : : : : : : : : : : : : : : : : : 114

7.7 Conclusions of This Chapter : 117

8 Conclusion 118

Bibliography 119

List of Publications by the Author 131

Appendix 137

A Performance and Costs of Commodity Hardware 137

A.1 CPU Performance and Memory Performance : : : : : : : : : : : : : : : : : 137

A.2 Hardware Interrupt Costs : 138

A.3 I/O Bus Performance : 138

B GigaE PM Protocol 140

C NAS Parallel Benchmarks 143

D NPB Results on RWC SCore Cluster I 145

E NPB Results on RWC PC Cluster II 150

List of Figures

3.1 Original SCore Cluster System Software : : : : : : : : : : : : : : : : : : : 26

3.2 Virtual Networks : 27

3.3 RWC PC Cluster II : 31

3.4 RWC SCore Cluster I : 32

3.5 RWC SCore Cluster II : 33

3.6 Amber Version 5 Prowat Benchmark Results : : : : : : : : : : : : : : : : : 35

4.1 Data and Control Flow in TCP/IP Handling : : : : : : : : : : : : : : : : : 39

4.2 Host CPU Polling e�ects on PCI DMA transfer: Host to NIC : : : : : : : 46

4.3 Host CPU Polling e�ects on PCI DMA transfer: NIC to Host : : : : : : : 46

4.4 Descriptors, Host, and NIC in GigaE PM : : : : : : : : : : : : : : : : : : : 48

4.5 GigaE PM Bandwidth : 52

4.6 GigaE PM Round Trip Time : 53

4.7 CG Class S on GigaE PM : 54

4.8 IS Class S on GigaE PM : 55

5.1 TCP/IP Protocol Processing in Unix : 59

5.2 The Interrupt Reaping Technique : 65

5.3 The PM/Ethernet Architecture : 67

5.4 Application Level Bandwidth : 70

5.5 Application Level Round Trip Time : 71

5.6 NPB IS (Class A) on PM/Ethernet : 72

5.7 NPB LU (Class A) on an SMP Cluster : 73

6.1 The Network Trunking Architecture : 81

vi

LIST OF FIGURES vii

6.2 Communication Bandwidth on the Digital Tulip : : : : : : : : : : : : : : : 84

6.3 Communication Bandwidth on the Intel EEPRO100 : : : : : : : : : : : : : 85

6.4 Communication Bandwidth on the 3Com 3C905B : : : : : : : : : : : : : : 85

7.1 Example of a Cluster of Clusters : 87

7.2 Example of a Cluster of Clusters : 88

7.3 Protocol Stacks on the UNIX Operating System : : : : : : : : : : : : : : : 90

7.4 PMv2 Architecture : 94

7.5 SCore3 Architecture : 96

7.6 Communication Bandwidth on PMv2 (100BaseT) : : : : : : : : : : : : : : 98

7.7 Communication Bandwidth on PMv2 (Gigabit Ethernet, Myrinet) : : : : : 99

7.8 Communication Round Trip Time on PMv2 : : : : : : : : : : : : : : : : : 100

7.9 MPI Communication Bandwidth on PMv2 (100BaseT) : : : : : : : : : : : 101

7.10 MPI Communication Bandwidth on PMv2 (Gigabit Ethernet, Myrinet) : : 102

7.11 MPI Communication Round Trip Time on PMv2 : : : : : : : : : : : : : : 103

7.12 IS CLASS A on SCore Cluster I : 104

7.13 CG CLASS A on SCore Cluster I : 105

7.14 LU CLASS A on SCore Cluster I : 106

7.15 BT CLASS A on SCore Cluster I : 107

7.16 IS CLASS A using SMP on SCore Cluster I : : : : : : : : : : : : : : : : : 107

7.17 LU CLASS A using SMP on SCore Cluster I : : : : : : : : : : : : : : : : : 108

7.18 Communication Round Trip Time on SCore Cluster II : : : : : : : : : : : 110

7.19 Communication Bandwidth on SCore Cluster II : : : : : : : : : : : : : : : 111

7.20 NAS Parallel Benchmarks, Class B, 16 nodes, on SCore Cluster II : : : : : 112

7.21 EP CLASS B on PC Cluster II : 114

7.22 BT CLASS B on PC Cluster II : 115

7.23 LU CLASS B on PC Cluster II : 115

7.24 CG CLASS B on PC Cluster II : 116

7.25 IS CLASS B on PC Cluster II : 116

D.1 NPB BT CLASS A on RWC SCore Cluster I : : : : : : : : : : : : : : : : : 145

viii LIST OF FIGURES

D.2 NPB CG CLASS A on RWC SCore Cluster I : : : : : : : : : : : : : : : : : 146

D.3 NPB EP CLASS A on RWC SCore Cluster I : : : : : : : : : : : : : : : : : 146

D.4 NPB IS CLASS A on RWC SCore Cluster I : : : : : : : : : : : : : : : : : 147

D.5 NPB LU CLASS A on RWC SCore Cluster I : : : : : : : : : : : : : : : : : 147

D.6 NPB MG CLASS A on RWC SCore Cluster I : : : : : : : : : : : : : : : : 148

D.7 NPB FT CLASS A on RWC SCore Cluster I : : : : : : : : : : : : : : : : : 148

D.8 NPB SP CLASS A on RWC SCore Cluster I : : : : : : : : : : : : : : : : : 149

E.1 NPB BT CLASS B on RWC PC Cluster II : : : : : : : : : : : : : : : : : : 150

E.2 NPB CG CLASS B on RWC PC Cluster II : : : : : : : : : : : : : : : : : : 151

E.3 NPB EP CLASS B on RWC PC Cluster II : : : : : : : : : : : : : : : : : : 151

E.4 NPB IS CLASS B on RWC PC Cluster II : : : : : : : : : : : : : : : : : : 152

E.5 NPB LU CLASS B on RWC PC Cluster II : : : : : : : : : : : : : : : : : : 152

E.6 NPB MG CLASS B on RWC PC Cluster II : : : : : : : : : : : : : : : : : 153

E.7 NPB FT CLASS B on RWC PC Cluster II : : : : : : : : : : : : : : : : : : 153

E.8 NPB SP CLASS B on RWC PC Cluster II : : : : : : : : : : : : : : : : : : 154

List of Tables

2.1 History of Commodity Hardware : 8

2.2 Examples of Massively Parallel Computers : : : : : : : : : : : : : : : : : : 13

2.3 Dedicated Cluster Networks : 17

2.4 Examples of Cluster Projects Using Dedicated Cluster Networks : : : : : : 17

2.5 Examples of Commercial Cluster System : : : : : : : : : : : : : : : : : : : 20

2.6 Summary of Parallel Computing : 23

3.1 Original APIs on PM : 28

3.2 RWC PC Cluster II Speci�cations : 31

3.3 RWC SCore Cluster I Speci�cations : 32

3.4 RWC SCore Cluster II Speci�cations : 34

4.1 Data Transfer Cost Between the Host and NIC Memories and Interrupt /

System Call Processing : 38

4.2 Access Cost by Descriptors Location : 44

4.3 Access Cost by a Flag Location : 45

4.4 Trigger Cost From the NIC to the Host : 45

4.5 Comparison of Cost in an N Word Message : : : : : : : : : : : : : : : : : : 50

4.6 Comparison of Memory Usage in an N node Cluster : : : : : : : : : : : : : 50

4.7 Evaluation Environment for GigaE PM : 51

5.1 Evaluation Environment for TCP/IP : 59

5.2 Round Trip Time and Bandwidth in Protocols : : : : : : : : : : : : : : : : 60

5.3 TCP/IP Overhead : 62

5.4 Number of Interrupts on IS : 73

ix

x LIST OF TABLES

5.5 Interrupt Reaping on Other Platforms : 74

5.6 Comparison of Protocol Processing Cost Analysis on 1/2 of the Round Trip

Time : 74

6.1 Evaluation Environment for Network Trunking : : : : : : : : : : : : : : : : 83

6.2 Round Trip Time of Network Trunking (�sec) : : : : : : : : : : : : : : : : 83

7.1 An Example of a Destination PM Device Table on PM/Composite : : : : : 89

7.2 Protocol Processing Requirements on Each Network : : : : : : : : : : : : : 90

7.3 APIs on PMv2 : 92

7.4 Measurement Environments on RWC SCore Cluster I : : : : : : : : : : : : 97

7.5 Communication Round Trip Time on PMv2 : : : : : : : : : : : : : : : : : 99

7.6 Communication Round Trip Time on PM/Shmem : : : : : : : : : : : : : : 100

7.7 MPI Communication Round Trip Time : 103

7.8 Measurement Environment on RWC SCore Cluster II : : : : : : : : : : : : 109

7.9 Measurement Environment on RWC PC Cluster II : : : : : : : : : : : : : : 113

A.1 SPEC95, System Call Cost and Memory Copy Performance : : : : : : : : : 137

A.2 Hardware Interrupt Cost : 138

A.3 PCI DMA Performance : 139

C.1 NAS Parallel Benchmarks and Dominant Message Characteristics on Class

A, 16 Node programs : 144

Chapter 1

Introduction

This thesis proposes design techniques to achieve high-performance communication for

parallel computers using a commodity network implemented at the software level. The

proposed techniques are based on the balance among processor performance, system bus

performance, memory performance and I/O bus performance in the communication scheme

for a parallel computer. Moreover, hardware and software techniques should be combined

e�ectively in order to design and achieve the goal of high-performance communication.

1

1 Introduction 1.1. The Need for Parallel Processing and Cluster Systems

1.1 The Need for Parallel Processing and Cluster

Systems

The personal computer (PC) has been augmented with new information processing tech-

niques such as multimedia processing. The advance of PCs is based on the remarkable

development of microprocessing technology and the improvements of cost performance in

recent years.

The spread of PCs pushes the advances in intranet and Internet technologies, such as

the World Wide Web (WWW) and electronic commerce, and vice versa. This, in turn,

increases the speed of networks, e.g., 10/100/1000Mbps in a local area network, and reduces

hardware costs dramatically. In intranets and on the Internet, there are many applications

that process huge volumes of transactions, such as WWW services, mail services, news

services, streaming-video services, and data mining.

In addition, large-scale computation power is required for simulation and data-mining.

For example, a new information technology, called Bioinformatics, has emerged and holds

promise for understanding disease mechanisms, as well as designing drugs and macro-

molecular materials, and so on. This technology needs molecular dynamics applications

and data-mining of the human genome that searches huge volumes of data and requires

high performance computing [Aki99]. Another example is the Earth Simulation System,

represented by the \Earth Simulator"[ETH], for understanding climate and ocean systems,

and predicting
oods, global warming, and weather disasters. These simulations require

huge amounts of computation power to run climate models, weather models and
uid

dynamics problems.

To process such huge data tasks, the demand for parallel computers has been increased.

Previously, such a parallel computers could not be built without dedicated hardware, be-

cause there were neither standard I/O buses nor standard Gigabit class networks. Recently,

on account of improvements in computing performance in the PC �eld, and improvements

in the speed of computer networks, a cost-e�ective parallel processing system can be built

by combining commodity hardware. Such systems are called cluster systems.

In the early 1990s, some researchers had tried to build clusters using commodity net-

2

1 Introduction 1.2. Issues in Cluster Systems Using Commodity Networks

works, such as 10/100Mbps Ethernet and ATM/LAN. However, performance was limited

compared to that of commercial parallel computers due to the network hardware limita-

tions. In the middle of the 1990s, several research projects started to build clusters with

a dedicated cluster network. These projects showed that a network of PCs was capable of

becoming a supercomputer. Through these research e�orts, clusters with dedicated cluster

networks have already become very popular and important in building high performance

commercial super-computers.

With the appearance of Gigabit Ethernet, Gigabit class communication has become

possible on commodity networks. This fact shows that the performance of commodity

networks has caught up with that of dedicated cluster networks. Using Gigabit Ethernet,

a high performance cluster system, with application performance comparable to that of

dedicated networks, can be built in a LAN environment.

1.2 Issues in Cluster Systems Using Commodity Net-

works

Usually, the TCP/IP Internet protocol is used on cluster systems using commodity net-

works. The communication performance of the TCP/IP protocol on Gigabit Ethernet

achieves only 45MB/s in total bandwidth, even though the physical link performance is

125MB/s[FO00]. Cluster systems using the TCP/IP protocol cannot ensure optimum per-

formance for either present or future network hardware. A communication facility to enable

high-performance communication is needed in order to build parallel computers using Gi-

gabit class commodity networks.

Since Gigabit Ethernet does not guarantee message transfer at the hardware level, a

reliable communication protocol must be implemented. Moreover, the size of the maximum

transfer unit (MTU) of Gigabit Ethernet is 1514 bytes. This fact shows that a reliable

protocol processing of each packet must be �nished within 12 �s at a 125 MB/s transfer

rate, and within 15 �s at a 100 MB/s transfer rate. Thus a light-weight reliable protocol

and design methods to minimize the overhead become very important and are issues to be

solved on communication facilities on Gigabit Ethernet.

3

1 Introduction 1.3. The Purposes of This Thesis

1.3 The Purposes of This Thesis

The �rst purpose of this thesis is to propose implementation designs which ensure the max-

imum communication performance on cluster systems using Gigabit Ethernet. The second

is to show that a communication facility using Gigabit Ethernet can achieve application

performance comparable to that of dedicated-cluster network communication.

In order to realize the �rst purpose, the following designs to improve communication

performance are proposed:

\Hardware dependent designs":

Designs to minimize the information exchange cost between the host and network inter-

face card (NIC) are proposed. There are signi�cant design choices: where should a reliable

protocol be processed, in the host CPU or in the NIC CPU; and where should the data

structures for managing the send and receive bu�ers and triggering be allocated, in the

host or in the NIC memory. Since those structures are shared resources, the cost between

host and NIC information exchange is crucial in performance.

In this approach, the cost of TCP/IP processing is analyzed using a model of information

exchange for TCP/IP, and for this, the following method and protocol have been developed:

� A design method for minimizing the aforementioned information exchange cost

� A reliable light-weight communication protocol called \GoBack-N for PM"

The GigaE PM communication facility has been implemented, and evaluated in terms of

its communication and application performance.

\Hardware independent designs":

Designs to reduce the processing overhead of existing protocol stacks are proposed. To

propose appropriate methods, the cost of the TCP/IP communication protocol is analyzed.

Then, a new protocol-processing scheme based on the results of a detailed cost analysis of

TCP/IP processing is proposed.

Using this scheme, PM/Ethernet has been implemented and its performance evaluated.

In addition, the Network Trunking technique to improve bandwidth performance using

4

1 Introduction 1.4. Overview of This Thesis

multiple NICs has been developed, and evaluated.

To achieve the second purpose, application performance on Gigabit Ethernet is compared

with that on a dedicated cluster network using a communication facility which supports

both dedicated cluster networks and commodity networks. The NAS parallel benchmarks

[NPB] are used to measure application performance, because they include e�ective algo-

rithms for computational
uid dynamics (CFD) applications and some of these re
ect the

communication performance quite wall.

1.4 Overview of This Thesis

Chapter 2 describes the background and needs of parallel processing and introduces some

studies of cluster systems, especially those involving communication facilities. Chapter

3 gives an overview of the Real World Computing (RWC) project and the position of

this thesis in the project. Chapter 3 also discusses the objectives of this thesis and the

SCore software that is the implementation and evaluation platform used in this thesis.

The "hardware dependent designs" are described in Chapter 4; the "hardware independent

designs" in Chapter 5; and, the \software techniques using multiple NICs" in Chapter 6.

Finally, the \comparison of application performance with a dedicated cluster network" is

described in Chapter 7.

1.5 Contributions

The original contributions of this thesis are the following software designs needed to make

a cluster system with commodity networks and to achieve application performance com-

parable to that of dedicated-cluster network communication:

� Hardware dependent designs: Designs to minimize information exchange cost between

the host and network interface card (NIC) are proposed. GigaE PM is implemented

using these designs. The evaluation results show that about half of the information

exchange cost of TCP/IP is eliminated.

5

1 Introduction 1.5. Contributions

� Hardware independent designs using existing NICs: Designs needed to reduce the

processing overhead of existing protocol stacks are proposed. PM/Ethernet is im-

plemented using these designs. The evaluation results show that two thirds of the

protocol-processing overhead of TCP/IP is eliminated.

� Software techniques using multiple NICs: Designs needed to achieve high bandwidth

using multiple NICs are proposed.

6

Chapter 2

Background

Cluster systems are not discussed without considering the histories of commodity hard-

ware (such as processors and networks) and parallel computers. This chapter describes

the history of commodity hardware and parallel computing and explains the background

of cluster systems using commodity networks, including surveys of their cluster related

projects, especially those involving software techniques used to realize high-performance

parallel computation.

7

2 Background 2.1. History of Commodity Hardware

2.1 History of Commodity Hardware

Table 2.1: History of Commodity Hardware

Year Microprocessors Max Clock I/O Bus on PC Ethernet

1971. 4004 108 KHz
1972. 8008 108 KHz
1974. 8080 2 MHz
1978. 8086 10 MHz
1981. XT 2.4 MB/s 10 Mbps
1982. 80286 12.5 MHz
1984. ISA 8 MB/s
1985. Intel 386DX 33 MHz
1987. EISA 33 MB/s
1989. Intel 486DX 50 MHz
1992. PCI 132 MB/s
1993. Pentium 166 MHz (32bit 33MHz) 100 Mbps
1995. Pentium PRO 200 MHz 1 Gbps
1997. Pentium II 450 MHz
1999 -. Pentium III 1.13 GHz PCI 533 MB/s
2000 -. Pentium 4 1.5 GHz (64bit 66MHz)

Microprocessors

As shown in Table 2.1[HIN, HCP, PCI, SPC, SIP, SIS, SET], the microprocessor was

invented to make an electronic calculator in 1971. Since then, it has been used in embedded

systems, industrial process controls, telephone exchange switches, and so on. In the 1980's,

there were two new uses for the microprocessor technology: the personal computer, shortly

to be known as the PC, and the engineering workstation(WS). At the beginning of PC

market development, there were many kinds of PCs, each using di�erent microprocessor

architectures, such as Motorola 6800, Intel 8086, Zilog Z80, and so on. PCs were used

for word processing, spread sheets, small transaction processing, and so on. As the PC

market grew, competition intensi�ed. Since IBM introduced the PC/XT and PC/AT using

the Intel 16 bit 8086 microprocessor, known as the x86 architecture, many vendors have

duplicated the speci�cations of IBM PCs. Some vendors, such as AMD and Cyrix, have

developed microprocessors, pin-compatible to the Intel 8086 architecture. Now, the word

8

2 Background 2.1. History of Commodity Hardware

PC refers to a computer using the Intel x86 architecture. Severe competition reduced

the life cycle of microprocessors. However, because the Intel microprocessor 8086 and its

successors did not have
oating point units on one processor chip until late 1980s. The PC

was limited to personal use. There was an 8087
oating point co-processor, but it was too

expensive for personal use.

Since reduced instruction set computer (RISC) architecture[PD80] was introduced in the

beginning of the 1980s, RISC microprocessors with
oating point and memory management

units, such as the SPARC, Alpha and MIPS chips, have been developed to build engineering

workstations. The target markets of engineering workstations were computer-aided design,

computer graphics, scienti�c calculation, and so on. Due to a smaller market size than

that of the PC, the cost of the workstation could not be reduced.

In the early 1990s, Intel introduced the new Pentium architecture which increased pro-

cessor clock speed, supported a 64bit system bus and a multi-processor, upper compatible

to the x86 architecture. At that time, the x86 architecture was close to RISC-based ar-

chitectures in terms of functionalities. The performance, however, was slower than the

RISC-based architectures because of a lack of processor clock speed.

In the middle of the 1990s, the Pentium architecture`s performance was dramatically

improved (Appendix A.1) because more processor performance was required for multimedia

processing, graphical user interfaces, and so on. Especially, the cost performance of PC

was getting close to that of an engineering workstation using a RISC-based architecture,

because the x86 processor was less expensive than a RISC-based processor as the result of

severe competition and a larger market than that of the engineering workstation. Thus,

after the middle of the 1990s, PCs were not only just for word processing, but were also

used to the replace engineering workstations.

The I/O Bus

In early computer systems, there was no standard I/O bus, so PC manufacturers used

proprietary I/O busses. In PCs, each PC manufacturer developed its own I/O bus, such

as the IBM PC/XT bus. The PC/XT bus was completely under the Intel 8088 proces-

sor's direct control, and its addressing was limited to a width of 8-bits. In spite of many

9

2 Background 2.1. History of Commodity Hardware

improvements to the speci�cation, bus speed was also limited to match to the processor.

The Intel 8088 on PC/XT was an eight bit, 4.77 MHz processor. Thus the XT bus, which

required two clock cycles for data transfer, was limited to 2.38 MB/s.

The Industry Standard Architecture (ISA) bus, as part of the PC/XT, was released in

1981. The ISA bus was used by the Intel 80286, and was designed to run at 8MHz with a full

16-bit data bus. With the spread of the ISA bus, It became one of the industry`s standard

I/O busses. Still limited by its two-clock-cycle data transfer, the ISA bus can reach speeds

of only 8MB/s. Extended ISA (EISA) was developed to improve ISA bandwidth by a

data bus expansion to 32 bits. However 33MB/s of EISA data transfer was not enough to

satisfy the demands of the processing speed of 32 bit processors, such as the Intel Pentium

processor.

The appearance of the PCI bus in 1992 expanded data transfer speeds to 132MB/s

(32bits, 33MHz) matching current processor speeds. It is very likely that ISA slots will

soon disappear from new PCs altogether. The PCI speci�cation continues to improve, for

example, with 64bit, 66MHz expansion. The 64bit, 66MHz PCI achieves 533MB/s data

transfer1.

Commodity Networks

In the early 1980s, 10Mbps Ethernet LANs began to be used, early implementations

of Ethernet LANs employed thick coaxial cable (yellow cable), de�ned by the 10Base5

standard. Network software, such as telnet and network �le systems, were developed and

used on computers connected with Ethernet. Unfortunately, the yellow cable was diÆcult

to work with, because a miss-operation caused the network to crash when nodes were

added or removed. In the middle of 1980s, 4Mbps Token-Ring LAN was introduced for

the original IBM Personal Computer. The Token-Ring LAN was implemented on shielded

twisted pair (STP) cable which was easy to use, so users of Token-Ring LAN increased

rapidly.

In the early 1990s, with the increasing number of computers connected to LANs, a

10Mbps network was not fast enough to be shared by numbers of computers. After 100Mbps

1Some PCI bus performance is shown in Appendix A.2.

10

2 Background 2.1. History of Commodity Hardware

FDDI was introduced, FDDI usage expanded as a backbone LAN because FDDI had higher

bandwidth and could be used over longer distances than other LAN technologies. Moreover,

FDDI has dual-ring LAN technology for redundancy. At that time, a new Ethernet LAN,

based upon UTP (un-shielded twisted pair) and de�ned by the 10BaseT standard, was

again much easier to use than 10Base5. The other feature of 10BaseT is a hub and spoke

architecture. The various types of data equipment are all connected to a central point

called a Multi-port Repeater or Hub by UTP cable. This reduces the problem of adding

or removing nodes. Due to these features, 10BaseT took o� in the market place.

The networking of computers has been spreading rapidly since the appearance of 10BaseT

with increasing demands for network computing, such as on-line transactions, data-base

and �le sharing servers, and especially the spread of intranet and Internet technologies

represented by growth in the use of theWWW. Thus, a number of vendors supply the same

equipment, and both technological innovation and price point competition between vendors

become intense. As the result of competition, the cost performance of Ethernet equipment

continues to increase. For the LAN market place, 10BaseT was too slow to share among a

number of hosts. This led to the development of 100BaseT (a twisted cable version of Fast

Ethernet) including 100BaseF (a �ber version) in 1993. Another technology innovation

was Ethernet switch technology to improve point-to-point bandwidth individually. With

these technology innovations for Ethernet, the use of FDDI gradually began to decrease.

In the middle of the 1990s, with the increasing needs of multimedia processing, such as

video-on-demand, asynchronous transfer mode (ATM) LAN was introduced. The 155Mbps

ATM/LAN is a technology which supports QOS (quality of service), and is based on broad-

band ISDN (B-ISDN). So, users can use an ATM network not only as a LAN environment

but also as a WAN environment without converting packet frames. However, as 155Mbps

ATM/LAN network interface cards (NICs) and switches were very expensive at that time,

the use of ATM/LAN did not increase. So a cost-e�ective version of ATM25 (a 25Mbps

version) was proposed.

At the same time, Fast Ethernet has achieved remarkable growth in the LAN market

place because of having the best interoperability with 10Mbps Ethernet. With the growth

of the Ethernet market place, the cost of 10BaseT and 100BaseT Ethernet has dropped

11

2 Background 2.2. The History of Massively Parallel Computers

dramatically, and no other network could match the cost of Ethernet. 100BaseT is not the

end of the road. The speed of an Ethernet network increased to 1Gbps (Gigabit Ethernet)

in 1995. Vendors are now demonstrating a proposal for 10Gbps Ethernet for a metropolitan

network.

2.2 The History of Massively Parallel Computers

Since Cray, Inc. introduced the CRAY-1 vector parallel computer in 1976, the �rst CRAY-

1 was installed at Los Alamos National Laboratory in 1976 for 8.8 million dollars. It

boasted a world-record speed of 160 M
ops(million
oating-point operations per second).

Cray and other computer vendors, such as NEC and Fujitsu, have developed vector parallel

computers whose processing units are dedicated and can not be used for other purposes.

The development of new systems involves not only processors, but also the development of

operating systems, compilers, and programming environments. This results in an expensive

supercomputer and a long development cycle. The CRAY-2 achieved 1.9 G
ops in 1985,

and the CRAY C90, 16 G
ops in 1991. In the 1970s and 1980s, there were no alternatives to

achieve a high performance computing environment. Thus, supercomputers were popular

in the high performance computing �eld.

After RISC-based architectures were introduced in the late 1980s as described in sec-

tion 2.1, some computer vendors, such as Thinking Machine, Intel, and Cray, thought

that thousands or millions of microprocessors connected by a high speed network would

enable the building of a high performance computing environment which would replace

vector computers for some applications. Because neither standard high performance I/O

busses nor networks were available in the late 1980s, computer vendors started to develop

dedicated high performance networks, which constitute parallel computers using micropro-

cessors, from scratch. Those computers were using RISC-based architectures because the

performance of RISC-based architectures was higher than that of other microprocessors

including the x86 architecture in the late 1980. Such a parallel computer was referred to

as a massively parallel computer (MPP). The �rst MPPs were announced in the beginning

of the 1990s, as shown in Table 2.2. At that time, the performance of the MPP was about

12

2 Background 2.3. Standardization of the Parallel Application Programming Environment

ten times higher than that of vector computers, such as the CRAY C90.

Unlike a vector computer involving the development of a dedicated processor, the cost

of development was reduced in the high performance computing market. However, it still

involved the development of high performance network and system software.

Though the length of the development cycle was reduced in the high performance com-

puting market, the development cycle was reduced dramatically in the PC market. Every

half year, the microprocessor's clock speed was improved in 1990s. This means that a MPP

cannot catch up to the latest microprocessor technology. Most vendors withdrew from the

market in the latter half of the 1990s.

Table 2.2: Examples of Massively Parallel Computers

Network
Peak

Year Machine Vendor Processor Bandwidth
Performance

per Processor
1992. CM5 Thinking SuperSparc 20 MB/s 135 G
ops

Machines 32MHz (1056PEs)
1992. Paragon XP/S Intel Intel i860 XP 200 MB/s 184 G
ops

50MHz (3680PEs)
1993. T3D CRAY Alpha 21064 300 MB/s 307 G
ops

200MHz (2048PEs)
1995. T3E CRAY Alpha 21164 500 MB/s 1229 G
ops

300MHz (2048PEs)

Note: Peak Performance [RTO]

2.3 Standardization of the Parallel Application Pro-

gramming Environment

MPP, which is described in section 2.2, provided its own special communication facility

for users to write parallel applications, for example, Paragon provided the NX message

passing library, CM5, the CM message-passing communications library, CMMD, and T3D,

the shmem library. So, users had to write parallel applications using proprietary libraries.

With the increase of the kinds of MPPs available, the portability of parallel applications

between di�erent computers was lost. Moreover, some applications developed could not

13

2 Background 2.4. A History of Cluster Computing

be used because some vendors withdrew from the market. Thus, the portability of the

applications to other MPPs became a very important issue to be solved.

To realize the needed portability of applications, PVM[PVM] and MPI[MPIa] have been

proposed. A user program written using PVM or MPI can run on other machine platforms

without modi�cations. They are based on the message passing model. Message passing

is a paradigm used widely on certain classes of parallel machines, especially those with

distributed memory. The main advantages of establishing a message-passing standard are

portability and ease-of-use. In a distributed memory communication environment in which

the higher level routines and/or abstractions are built upon lower level message passing

routines, the bene�ts of standardization are particularly apparent.

PVM

PVM[PVM] is a message passing library which is designed to be run on heterogeneous

networks, and which has good interoperability between di�erent hosts, because the PVM

model is based on the virtual machine concept. PVM provides a set of dynamic resource

manager and process control functions, and includes runtime environments.

MPI

MPI[MPIa] is a message passing library speci�cation which is designed to run faster

within a large multiprocessor. MPI has many point-to-point and collective communication

options. Moreover, it has the ability to specify a logical communication topology. There

are a lot of MPI implementations, such as MPICH[MPIb], and MPI-LAM[LAM] and so

on. These environments can be used not only on MPPs but also on PCs or workstations

connected by a LAN.

2.4 A History of Cluster Computing

In addition to MPP technology, many kinds of local area network (LAN), such as Ethernet,

FDDI, ATM/LAN, Token-Ring, have been developed as described in section 2.1. With the

spread of the LAN environment in the 1980s, some researchers started to make distributed

operating systems, such as Accent[RR81], Mach[JR86], V-system[TLC85], Sprite[OCD+88],

14

2 Background 2.4. A History of Cluster Computing

and so on. Some of them, such as Mach and V-system, had a mechanism allowing users

to run parallel jobs, and making them suitable as commercial or research environments.

However, in order to use the operating systems, users had to install new operating systems

and write parallel programs using special APIs of the operating system.

2.4.1 Cluster Computing Using Commodity Networks in the
Early 1990s

In the early 1990s, some free Unix-based operating systems, such as Free BSD and Lin-

ux, made it possible to use a Unix-based operating system on PCs with LAN environ-

ments. Some researchers had tried to build clusters using commodity hardware, such as

existing PCs, workstations, and 10/100Mbps Ethernet or ATM/LAN. Examples include

U-NET[BBVvE97] and the Beowulf[BEO] project.

The Beowulf Project

The Beowulf project[BEO] proposed a parallel computer using existing PCs running on

Linux, a commodity network, the TCP/IP protocol, and MPI[MPIa] (or PVM[PVM]),

as described in section 2.3, on top of the TCP/IP protocol. All of the components were

composed of existing parts. The Beowulf project developed a number of Ethernet device

drivers on Linux in order to spread their style of super-computing. Beowulf has also

proposed the Channel Bonding technique [T. 95] to achieve high-bandwidth communication

using multiple 10Mbps Ethernet NICs.

U-NET

The system call overhead in computer systems in the �rst half of the 1990s was very ex-

pensive, for example, that of the 5.5 �s SuperSPARC 75MHz system. In order to eliminate

this overhead, U-NET[BBVvE97] used user-level communication on commodity networks,

such as Fast Ethernet and ATM in 1994. U-NET uses existing PCs running on Linux

(or Windows NT) and commodity networks. A user-level communication facility handles

network interface hardware directly by means of the user program without using hardware

interrupts. U-Net/MM[MW97] also supports Zero-Copy communication on ATM/LAN

and Fast Ethernet. The Zero-Copy communication is a technique to allow applications to

15

2 Background 2.4. A History of Cluster Computing

transfer data directly between virtual memory address spaces over networks.

These projects were di�erent as to whether an existing network protocol was used or not.

However, performance was limited compared with MPPs, due to the network hardware

bandwidth limitations.

2.4.2 Cluster Computing Using Dedicated Cluster Networks

Since 1992, PCs and workstations began to have a standard I/O bus, such as the PCI bus,

capable of more than 100MB/s transfer throughput. The PCI bus can utilize a Gigabit

class network. Several kinds of Gigabit class networks on the PCI bus have been developed

including Myrinet [N. 95, MYR] and Memory Channel [MEM], and SCI [SCI]. (Table 2.3).

These networks are brie
y described as follows:

� Myrinet [N. 95, MYR]

Myrinet is a 1.28 Gbps (160 MB/s) full duplex interconnection network supplied

by Myricom. Myrinet uses low latency cut-through routing switches and supports

reliable message transfer at the hardware level. A large Myrinet network can be

built with combinations of a number of Myrinet switches. The Myrinet network

interface card has an on-board programmable processor and local memory, which a

host processor can access. So the user can add special functionality using the NIC

processor.

� Memory Channel [MEM]

Memory Channel is a 133 MB/s dedicated cluster interconnect system that provides

virtual shared memory among nodes. The Memory Channel supports reliable message

transfer, and uses a memory mapped connection realized in hardware, through a

global Memory Channel address space. A page of virtual memory in one node is

connected by hardware to a page of virtual memory in another node.

� SCI [SCI, DOL]

Scalable Coherent Interface (SCI), an ANSI/IEEE 1596-1992 standard de�nes a point

16

2 Background 2.4. A History of Cluster Computing

to point interface and a set of packet protocols. An SCI interface has two unidirec-

tional links that operate concurrently. The SCI protocols support shared memory

by encapsulating bus requests and responses into SCI request and response pack-

ets. Packet-based handshake protocols guarantee reliable data delivery. A set of

cache coherence protocols is de�ned to maintain cache coherence in a shared memory

system.

Table 2.3: Dedicated Cluster Networks

Network Vendor
Link

I/O bus
Bandwidth

Myrinet Myricom 160 MB/s PCI, S-Bus
Memory Channel 2 Compaq 133 MB/s PCI
SCI Dolphine 200 MB/s S-Bus
SCI Dolphine 400 MB/s PCI

Table 2.4: Examples of Cluster Projects Using Dedicated Cluster Networks

Projects Organization
Processor Cluster Communication

Architecture Network Facilities

NOW[NOW] UCB Sparc Myrinet AM, AM-II
HPVM[HPV] NCSA Intel x86 Myrinet FM
C-Plant[CPL] Sandia National Lab Alpha Myrinet (self-made)
SHRIMP[SHR] Princeton University Intel x86 Myrinet VMMC, VMMC-II
BIP[PT98] RESAM Laboratory Intel x86, Alpha, Myrinet BIP

PowerPC
RWC[RWC] RWCP Sparc, Intel x86, Myrinet PM

Alpha

A number of cluster-research projects were started using dedicated cluster networks, as

shown in Table 2.4. They developed dedicated communication facilities in order to realize

high-performance communication as shown below:

The Berkeley NOW project

The Berkeley NOW project [NOW] used Sun SPARC systems, and has developed high-

performance communication facilities called Active Message (AM)[T. 92, T. 94] and AM-

17

2 Background 2.4. A History of Cluster Computing

II[CMC97], a global operating system called GLUnix, and a distributed �le server called

xFS. The Multi-protocol AM[LMC97] is able to support shared memory communication

and Myrinet communication to implement a switch interface to both communications. AM

and AM-II use a remote procedure model where a message includes both a control and

data. So, every network operation involves a round trip message transfer. AM and AM-II

support
ow control in the receive bu�er. They do not support virtual networks in order

to support the running of multiple processes.

The HPVM Project

The goal of High Performance Virtual Machines (HPVM) [HPV] is to increase the

accessibility and delivered performance of distributed computational resources for high

performance computing applications. HPVM supports number of APIs: Fast Messages

(FM)[Sco95], MPI-1, SHMEM, and Global Arrays. Fast Messages (FM) is a low-level

messaging layer designed to deliver underlying network's hardware performance to the ap-

plication, even for small messages. FM uses a send and receive message model with FIFO

message delivery, and a message of FM contains a function pointer and data. The data is

processed at receiver node using the function pointer. FM supports both
ow control of

receive bu�er and virtual network.

C-Plant

The Computational Plant (C-Plant) project [CPL] at Sandia National Laboratories is

developing a large-scale, massively parallel computing resource from a cluster of commodity

computing and networking components. C-Plant uses the partition model. All of the

nodes on the high-speed network, such as Myrinet, are treated by the system as a single

pool of nodes. Administrators can divide the machine into several functional partitions:

service, compute, disk I/O, and network I/O. All of these partitions run Linux, and kernel

modules are used to adapt the operating system to the functionality of the partition. A

communication facility with special �rmware was developed on the Myrinet network.

18

2 Background 2.4. A History of Cluster Computing

The SHRIMP Project

The goals of the SHRIMP (Scalable High-performance Really Inexpensive Multi-Processor)

project[SHR] is to study how to build such a system to deliver performance competitive

with or better than commercial multi-computer servers. The SHRIMP research topics are

protected user-level communication, eÆcient message passing, shared virtual memory, and

so on. Virtual memory-mapped communication (VMMC)[DBLP97] was developed in order

to realize low latency and high bandwidth as a part of protected user-level communication

on the SHRIMP project. VMMC uses a Zero-Copy technique over the Myrinet network.

VMMC-2[DBC+97] was designed to overcome the de�ciencies of VMMC model. VMMC-

2 extends VMMC with the following mechanisms: a user-managed TLB mechanism for

address translation and a reliable communication protocol at the data link layer.

BIP

BIP (Basic Interface for Parallelism)[PT98] is communication facility designed and im-

plemented on the Myrinet network for single user systems. BIP messages are implemented

for cluster of workstations connected by Myrinet boards with the LANai processor. BIP al-

so supports Zero-Copy communication. The implementation consists of a user-level library

associated with a custom MCP that will run on the Myrinet board. BIP-SMP[GPT99] is

also able to support shared memory communication and Myrinet communication to im-

plement a switch interface to both types of communication. BIP does not support
ow

control of the receive bu�er nor that of the virtual network.

RWC

Since 1995, the Real World Computing Partnership (RWCP) has been researching a clus-

ter system software called the SCore Cluster System software[HIK+93, HIS+93, HTI98] to

realize a seamless parallel and distributed system. The SCore Cluster System software

consists of a communication facility on Myrinet called PM[THI96, THIS97, TOHI98], an

MPI implemented on PM called MPICH-PM/CLUMP[TOT+99], a global operating sys-

tem called SCore-D [HIK+95, HYI+95, HIN+95, HTI+96, HTI98], a software distributed

shared memory system called SCASH[HIH+00], and a multi-threaded programming lan-

guage called MPC++[IHK+94, IHS+95, IHT+96, TISY]. PM uses a send and receive

19

2 Background 2.4. A History of Cluster Computing

message model and remote memory model. PM also supports both
ow control of the

receive bu�er and of the virtual network. Chapter 3 describes the details of the SCore

Cluster System software.

These research projects showed that a network of workstations was capable of becoming a

supercomputer. Through these research results, cluster computing with dedicated cluster

networks has already become very popular and important in building high performance

commercial super-computers, such as the IBM SP and the Compaq SC series (Table 2.5).

Table 2.5: Examples of Commercial Cluster System

Network
Peak

Year Machine Vendor Processor Bandwidth
Performance

per Processor
1999. Alpha SC Compaq Alpha 21264 210 MB/s 683 G
ops

667MHz (256PEs)
1999. RS/6000 SP IBM Power 3 160 MB/s 3070 G
ops

375MHz (2048PEs)

Note: Peak Performance [RTO]

With the increasing demands of dedicated cluster networks, lack of standardization of the

networks causes portability problems of application programs between the cluster networks.

So, in 1997, Compaq, Intel and Microsoft proposed the Virtual Interface Architecture in

order to make standard application interfaces on dedicated cluster networks.

VIA[VIA], the Virtual Interface Architecture, speci�es an industry-standard architec-

ture for communication within clusters of servers and workstations, and de�nes user-level

communication APIs. VIA is being widely implemented in Gigabit class networks on the

Microsoft Windows operating system. The design of VIA is based on U-NET[BBVvE97].

VIA supports connection oriented communication. Reliable communication support is an

option according to the VIA speci�cation, version 1.0. However, VIA is not an architecture

for users to carry out scienti�c parallel computation. There are some commercial imple-

mentation of VIA, such as Giganet, and research implementations, such as M-VIA[MVI],

the Berkeley VIA[BVI].

20

2 Background 2.5. Issues of Cluster Computing on Gigabit Class Commodity Networks

2.4.3 Cluster Computing Using Commodity Networks in the
Late 1990s

As already described in section 2.1, the speed of an Ethernet network has increased to

100Mbps (Fast Ethernet) in 1993, and 1Gbps (Gigabit Ethernet) in 1995. Beowulf-type

clusters have been spreading in network technology with clusters consisting of a small

number of nodes. Because of the spread of high cost-performance PCs and Ethernet e-

quipment, The GAMMA (Genoa Active Message MAchine) Project has been researching

cluster computing on commodity networks.

GAMMA[CC00] runs on clusters of PCs, based on the Intel architecture, connected

by Fast Ethernet or Gigabit Ethernet. At �rst, GAMMA had been implemented on Fast

Ethernet, but was not expected to be implemented on Gigabit Ethernet. The core of

GAMMA is a custom device driver under Linux, which operates the NIC. The GAMMA

driver delivers very low latency, high bandwidth communications using Active Ports, a

mechanism derived from Active Messages. The GAMMA driver is able to manage standard

IP traÆc in addition to GAMMA fast communications. This means that using GAMMA

on your LAN will not stop use of the standard UNIX network services. However, GAMMA

does not provide reliable communication, so a program fails when a message is lost. Also,

the implementation of GAMMA is dependent on NIC device drivers.

2.5 Issues of Cluster Computing on Gigabit Class

Commodity Networks

The appearance of Gigabit Ethernet has made Gigabit class communication possible on

commodity networks. The TCP/IP protocol is the most popular communication protocol

on commodity networks, such as Gigabit Ethernet, so TCP/IP is usually used for cluster

systems on these commodity networks. Many vendors and researchers have tried to evaluate

and improve TCP/IP performance on Gigabit Ethernet, however the message transfer

performance of TCP/IP continue to be only less than 50MB/s[HAM, SCL, SHT+99b].

Some vendors proposed the JUMBO frame which expanded the maximum transfer unit

(MTU) up to 9000 bytes, however, a special Ethernet switch is required and this loses

21

2 Background 2.6. Summary of This Chapter

interoperability with other Ethernet NICs.

A paper entitled \Communication Performance over a Gigabit Ethernet Network"[FO00]

measured TCP/IP communication performance on Gigabit Ethernet and on several versions

of the Linux operating system. The communication bandwidth of the TCP/IP Internet

protocol on Gigabit Ethernet only achieved 45MB/s using the G-NIC II and the Pentium II

350MHz processor although the physical link performance is 125MB/s. Thus, the TCP/IP

protocol can not ensure the maximum communication performance of the network hardware

of a Gigabit Ethernet. A communication protocol to ensure the maximum communication

performance of the network hardware is needed in order to build parallel computers using

Gigabit class commodity networks.

Since Gigabit Ethernet does not guarantee message transfer at the hardware level, a

reliable communication protocol must be implemented. Moreover, the size of the MTU of

Gigabit Ethernet is 1514 bytes. This fact shows that the reliable protocol processing of

each packet must be �nished within 12 �s at a 125 MB/s transfer rate, and 15 �s at a 100

MB/s transfer rate. Thus a light-weight reliable protocol and design methods to minimize

the overhead are issues to be solved.

2.6 Summary of This Chapter

� Parallel computing is summarized in Table 2.6. The History of cluster systems can

be considered as the history of the standardization of hardware and software.

� Cluster systems using PCs and workstations have become popular due to the remark-

able progress in microprocessors, I/O buses and high speed cluster networks. A lot

of cluster research projects have been carried out.

� The TCP/IP protocol can not ensure the maximum communication performance of

the network hardware of a Gigabit Ethernet, one of the next generation of commodity

networks.

� A light-weight reliable protocol and design methods to minimize protocol overhead are

needed to ensure the maximum communication performance of the network hardware.

22

2 Background 2.6. Summary of This Chapter

Table 2.6: Summary of Parallel Computing

Categories
Hardware Software

Processor
Logic I/O

Network OS
Network

Board Bus Protocol
Proprietary Vector -Ded -Ded -Ded -Ded -Ded -Ded
Parallel Computers
Massively Parallel +Ext -Ded -Ded -Ded -Ded -Ded
Computers
Cluster Computing with +Ext +Ext +Ext -Ded +Ext -Ded
Dedicated Network (PC) (PCI) (Myrinet) (Linux)

+Ext +Ext +Ext +Ext +Ext -Ded
Cluster Computing with (PC) (PCI) (Ethernet) (Linux)
Commodity Network +Ext

(TCP/IP)

+Ext: Existing, -Ded: Dedicated, (): Ex.

23

Chapter 3

The RWC Project

This chapter describes an overview of the Real World Computing (RWC) project in which

this thesis has done. Especially, the SCore Cluster System software (SCore Software) de-

veloped in the RWC project is described, as it is the platform used in this thesis. Hardware

platform RWC clusters are also described. These cluster systems were developed in order to

demonstrate that the performance of a cluster system was equal to that of a commercially

available parallel computer. The SCore Software has been installed and used as a practical

parallel processing environment for over two years in several places around the world.

This thesis has done as a part of SCore Software development. So, the goal of a commu-

nication facility on a commodity network as discussed in this thesis is actually to realize the

SCore software on a commodity network and to demonstrate its e�ectiveness in practical

use.

24

3 The RWC Project 3.1. The RWC Project

3.1 The RWC Project

Since 1992, the Real World Computing Partnership (RWCP) has been actively promoting

the Real World Computing (RWC) Project, a 10-year plan, under the guidance of the

Ministry of International Trade and Industry (MITI), to create an innovative system of

information processing technologies capable of handling various types of information in the

real world.

One of the main research �elds of the RWC project is Distributed Computing Technology.

In this �eld, the Parallel and Distributed System Software Laboratory has been researching

a cluster system software called the \SCore Cluster System Software" to realize a \seamless

parallel and distributed system"(seamless system)[ISS96] since 1995. The seamless system

will become a next-generation parallel and distributed system for the LAN of the future

with a transmission throughput ranging from several Gbps to 10 Gbps. A seamless system

is a distributed system that enables users to draw the optimal computing power to meet

users' needs from computers on a network in a distributed environment using a high-speed

LAN. The seamless system must also support di�erent CPU architectures and di�erent

types of networks.

3.2 SCore Cluster System Software

A cluster system consists of a number of nodes which are connected by a network, so

when a parallel program is executed, some software is needed to provide an environment

which supports start-up function of parallel processes on the cluster nodes. Moreover,

when a cluster system is used by multiple users, some resource management, such as

global scheduler, which provides automatic dispatching to the unused nodes, time sharing

scheduler and so on, should be provided.

Cluster System software is not only software which provides the start-up function of

parallel processes, but also software which provides a multi-user environment, job manage-

ment and the other sophisticated features, such as checkpoint-restart for long-period jobs.

In a practical cluster system environment, users only specify the number of nodes and a

program, then, cluster system software allocates the number of nodes and executes the user

25

3 The RWC Project 3.2. SCore Cluster System Software

PM Firmware

Myrinet NIC

Linux Kernel

Ethernet NIC

Myrinet Driver

PM

SCore-D Global Operating System

SCASH MPC++ MPICH-PM/CLUMP

User application

Figure 3.1: Original SCore Cluster System Software

program automatically.

The SCore cluster system software (SCore software) [HIK+93, HIS+93, HTI98] is a system

software designed to realize a seamless system. This thesis has done as a part of the SCore

software development.

Figure 3.1 shows the architecture of the original SCore software which does not in-

clude software developed in this thesis. The original SCore software consists of a commu-

nication facility on Myrinet called PM[THI96, THIS97, TOHI98], an MPI implemented

on PM called MPICH-PM/CLUMP[OHT+97, OTHI98, TOT+99], a global operating sys-

tem called SCore-D[HTI+96, HTI98], a software distributed shared memory system called

SCASH[HIH+00], and a multi-threaded programming language called MPC++[IHK+93,

IHK+94, IHS+95, IHT+96, TISY].

26

3 The RWC Project 3.2. SCore Cluster System Software

Figure 3.2: Virtual Networks

3.2.1 A Low Level Communication Facility: PM

The PM communication facility[THI96, THIS97, TOHI98] is realized using a user-level

communication. To achieve low latency and high bandwidth communication, PM directly

accesses the Myrinet network interface to eliminate kernel traps and data copies between

kernel and user spaces[THIS97]. PM consists of a user-level library, a kernel-level driver,

and a communication protocol handler on the Myrinet network hardware. The PM kernel-

level driver initializes the Myrinet network interface and maps the SRAM of the interface

to the user address space so that the PM user-level library accesses to it directly.

PM provides a virtual network mechanism called PM channel as shown in Figure 3.2

in order to realize a multi-user environment on the SCore software. The channel provides

reliable datagram communication, instead of connection oriented communication such as

that of TCP/IP. Figure 3.2 shows an example of the virtual network usage. It is assumed

that two parallel applications A1 and A2 run on Node#1 through Node#N. The processes

for A1 use channel 1 while the processes for A2 use channel 2 in this �gure. Each process

for the same parallel application uses a PM channel exclusively, and communicates using

the same number of PM channels. A communication to another destination node is done

using the node number. PM context is also introduced, which stores the status of the PM

channel, and enables context switching on the SCore-D gang scheduler.

27

3 The RWC Project 3.2. SCore Cluster System Software

PM realizes not only message passing but also a remote memory transfer (Zero-Copy

communication), to provide high bandwidth communication. Table 3.1 shows the original

PM application programmable interface.

In remote memory transfer, a message is transferred using the DMA facility of the

Myrinet network without any memory copy operation by the host processor. Since the

DMA facility accesses the physical memory address space, the user virtual memory must

be pinned down to a physical memory location before the message is transferred. If each

message transfer involves pin-down and release of kernel primitives, the message transfer

bandwidth will decrease since those primitives are quite expensive. The pin-down cache

technique [TOHI98] which reuses the pinned-down area to decrease the number of calls to

pinned-down and release primitives has been proposed and implemented with a Zero-Copy

message transfer. The PM kernel-level driver implements the pinned-down and release

primitives since the mlock and munlock primitives are only available under the super user

mode.

Table 3.1: Original APIs on PM

Functions Description

PM Initializing
pmInit() Initializing PM library

PM Context Processing
pmOpenContext() Opening a PM Context
pmCloseContext() Closing a PM Context

PM Message Sending and Receiving
pmGetSendBuf() Getting a send bu�er
pmSend() Sending a message
pmReceive() Receiving a message
pmReleaseReceiveBuf() Releasing a receive bu�er

PM Remote Memory Processing
pmMLock() Processing Pin-down of user memory
pmMUnlock() Releasing Pinned-down user memory
pmVWrite() Processing remote memory write operation
pmWriteDone() Checking remote memory write completion

28

3 The RWC Project 3.2. SCore Cluster System Software

3.2.2 A Multi-Threaded Language: MPC++

MPC++[IHK+94, IHS+95, IHT+96, TISY] is a multi-threaded programming language.

MPC++ Version 2 is designed using two levels, level 0 and level 1. In MPC++ Level 0,

called the Multi-Thread Template Library (MTTL), parallel description primitives real-

ized by the C++ template feature, without any language extensions, are speci�ed. This

provides remote function invocation, synchronization structure, and remote memory access

facilities[Ish96] .

In MPC++ Level 1, the MPC++ meta-level architecture which enables library design-

ers to provide an optimizer speci�c to their class/template library in the library header

�le[TISY], is speci�ed. The library user may use such a high performance library by in-

cluding it in the header �le.

3.2.3 The MPICH-PM Communication Library

MPICH-PM[OHT+97] is an MPI library developed for PM. When a message passing li-

brary such as MPI is implemented on top of a lower level communication facility that

supports the Zero-Copy message transfer primitive[OTHI98], the message passing library

must handle the pinned-down memory area which is a restricted quantity resource under

a paging memory system. Deadlock can be caused by allocation of pinned-down memory

by multiple simultaneous requests for sending and receiving without some form of control.

MPICH-PM has overcome this issue and achieves good performance.

MPICH-PM/CLUMP[TOT+99], the successor of MPICH-PM, supports a cluster of mul-

tiprocessors, called CLUMP. Using MPICH-PM/CLUMP, The MPI legacy programs run

on CLUMP without any modi�cations. For example, suppose we have a CLUMP consist-

ing of 16 nodes, each of which contains dual processors. MPICH-PM/CLUMP provides

an MPI application with 32 processors or 32 processes. The communication between two

processes on di�erent nodes is realized by the PM communication facility using a Myrinet

network. Message transfer between two processes on one node is handled by the Direct

Memory Copy[TOT+99] technique which copies between the two processes directly using

the PM kernel-level driver.

29

3 The RWC Project 3.3. The Cluster System Hardware Platform

3.2.4 SCore-D

The SCore-D global operating system[HIK+95, HYI+95, HIN+95, HTI+96, HTI98] is im-

plemented as a set of daemon processes on top of a Unix operating system, written in

MPC++ without any kernel modi�cation[HTI98]. To e�ectively utilize processor resources

and to realize an interactive programming environment, parallel processes are multiplexed

in the processors' space and time domains simultaneously under SCore-D. Parallel pro-

cesses are gang-scheduled when multiplexed in the time domain. It has been proven that

the SCore-D gang scheduler overhead is less than 4 % of the total application execution

time[HTI98].

To realize gang scheduling under a communication layer which accesses the network

hardware directly, the network hardware status and messages in
ight on the network must

be saved and restored when switching to another parallel process. This mechanism is called

network preemption. By co-designing PM and SCore-D, the network preemption technique

has been developed.

3.2.5 SCASH

SCASH[HIH+00] is a software distributed shared memory system using PM library, and

memory management functions, such as memory protection, supported by an operating

system kernel. It is implemented as a user level runtime library. SCASH is a page-based

distributed shared memory system where the consistency of shared memory is maintained

on a per-page basis. SCASH is based on the Release Consistency (RC) memory model with

the multiple writer protocol.

3.3 The Cluster System Hardware Platform

This section describes the cluster research platforms, consisting of RWC PC Cluster II,

RWC SCore Cluster I and RWC SCore Cluster II. The SCore Cluster system software has

been developed on these RWC clusters. A four node mini-cluster which has Dual Pentium

II 400MHz processors is also used to develop the communication facilities.

30

3 The RWC Project 3.3. The Cluster System Hardware Platform

Figure 3.3: RWC PC Cluster II

Table 3.2: RWC PC Cluster II Speci�cations

Number of Processors 128
Processor Pentium Pro 200MHz
Memory [MB] 256
I/O Bus PCI
Local Disk 4GB
Networks Myrinet, Fast Ethernet

3.3.1 RWC PC Cluster II

RWC PC Cluster II[ITH+99] was designed to make a cluster system compact and easily

maintainable. We use the PCI-ISA passive backplane standard speci�ed by the PICMG

(PCI Industrial Computer Manufacturers Group)[PIC].

Figure 3.3 shows a photograph of RWC PC Cluster II, and Table 3.2 shows the speci�-

cations of the cluster. All nodes are connected by a Myrinet and Fast Ethernet network.

In this thesis, RWC PC Cluster II is used as a platform to evaluate the scalability of a

31

3 The RWC Project 3.3. The Cluster System Hardware Platform

Figure 3.4: RWC SCore Cluster I

Table 3.3: RWC SCore Cluster I Speci�cations

Number of Processors 48

Processor
16 node Dual Pentium III 500MHz,
16 node Alpha 21264 500MHz

Memory [MB] 512
I/O Bus PCI
Local Disk 9GB
Networks Myrinet, Gigabit Ethernet, Fast Ethernet

communication facility on Fast Ethernet.

3.3.2 RWC SCore Cluster I

RWC SCore Cluster I was developed to evaluate a heterogeneous environment (di�erent

CPU architectures and di�erent types of networks).

Figure 3.4 shows a photograph of RWC SCore Cluster I, and Table 3.3 shows its spec-

i�cations. RWC SCore Cluster I consists of a 16 node Dual Pentium III 500MHz system

32

3 The RWC Project 3.3. The Cluster System Hardware Platform

Figure 3.5: RWC SCore Cluster II

and a 16 node Alpha 21264 500MHz system connected by Myrinet, Gigabit Ethernet and

Fast Ethernet networks.

In this study, RWC SCore Cluster I is used as a platform to evaluate the scalability of a

communication facility using hardware independent techniques on Gigabit Ethernet, and

to compare application performance on di�erent networks.

3.3.3 RWC SCore Cluster II

RWC SCore Cluster II was developed to evaluate di�erent types of networks, such as

Myrinet and Gigabit Ethernet with a 64 bit PCI bus.

33

3 The RWC Project 3.3. The Cluster System Hardware Platform

Table 3.4: RWC SCore Cluster II Speci�cations

Number of Processors 128
Processor 64 node Dual Pentium III 800MHz
Memory [MB] 512
I/O Bus PCI
Local Disk 9GB
Networks Myrinet, Gigabit Ethernet, 3x Fast Ethernet

Figure 3.5 shows a photograph of RWC SCore Cluster II, and Table 3.4 shows the

speci�cations of the cluster. RWC SCore Cluster II consists of 64 node Dual Pentium III

800MHz systems with 64 bit 33 MHz PCI buses. All nodes are connected by Myrinet and

Fast Ethernet. The �rst half of the cluster is also connected by Gigabit Ethernet. The

latter half is connected by three NICs for Fast Ethernet networks.

In this study, RWC SCore Cluster II is used as a platform to evaluate the scalability of a

communication facility that does not depend on hardware, using existing Gigabit Ethernet

NICs and multiple NICs.

3.3.4 Application Performance on RWC Clusters

Figure 3.6 shows the Prowat benchmark results comparing RWC clusters with commercial

parallel computers used in studies of molecular dynamics. The Prowat benchmark is a

part of Amber[AMB], version 5, which was developed by UCSF, and sold as commercial

molecular dynamics software.

The execution time of the Prowat benchmark program is represented as the sum of the

non-parallel execution time for a data setup and the parallel execution time. The nonsetup

time shown in Figure 3.6 represents the time without the setup time included.

Figure 3.6 shows that the SCore Cluster System software runs at a speed comparable

to the commercial speed, and, the RWC PC clusters achieve comparable performance to

that of commercial parallel computers, such as the Cray T3E, the SGI Origin 2000, and

the Hitachi SR2201.

34

3 The RWC Project 3.4. The SCore Software on Commodity Networks

Figure 3.6: Amber Version 5 Prowat Benchmark Results

3.4 The SCore Software on Commodity Networks

The SCore software depended on Myrinet network, and did not support network hetero-

geneity. But, supporting other networks, especially local area networks, was required in

order to build a seamless system.

The appearance of Gigabit Ethernet has made Gigabit class communication possible, so

the RWC project has started to develop the SCore software on Gigabit Ethernet to support

network heterogeneity.

The goals of the communication facility on Gigabit Ethernet are as follows:

� Realizing high communication performance.

� Supporting the coexistence of a cluster communication protocol with other existing

protocols such as TCP/IP.

35

3 The RWC Project 3.5. Summary of This Chapter

3.5 Summary of This Chapter

� This thesis has done as a part of the research topics of the SCore Cluster System

software.

� RWC clusters have achieved performance higher than that of a commercial parallel

computer.

36

Chapter 4

Hardware Dependent Designs

This chapter proposes a method to minimize the information exchange cost between the

host and network interface card (NIC). A reliable communication protocol must be imple-

mented on a communication facility because Gigabit Ethernet does not guarantee message

transfer at the hardware level. There are signi�cant design choices: where should a reliable

protocol be processed, in the host CPU or in the NIC CPU; and where should the data

structures for managing the send and receive bu�ers and triggering be allocated, in the

host or in the NIC memory. Since those structures are shared resources, the cost of host

and NIC information exchange is crucial in performance.

In this approach, the cost of TCP/IP processing is analyzed using a model of the infor-

mation exchange of TCP/IP, and the following method and protocol have been developed:

� A design method for minimizing such information exchange cost, There are signi�cant

design choices: where should a reliable protocol be processed, in the host CPU or in

the NIC CPU; and where should the data structures for managing of the send and

receive bu�ers and triggering be allocated, in the host or in the NIC memory. Since

those structures are shared resources, the cost between host and NIC information

exchange is crucial in performance.

� A reliable light-weight communication protocol called \GoBack-N for PM"

Using these method and protocol, the GigaE PM communication facility has been de-

signed, and its performance evaluated.

37

4 Hardware Dependent Designs 4.1. Network Protocols and NICs

Table 4.1: Data Transfer Cost Between the Host and NIC Memories and Interrupt / System
Call Processing

Processing Costs (�s)

N words (4bytes/word) transfer:
from Host to Host by Host Processor 0.03 � N
from Host to NIC by Host Processor 0.25 � N
from NIC to Host by Host Processor 0.57 � N
from Host to NIC by NIC DMA 2.39 + 0.03 � N
from NIC to Host by NIC DMA 2.00 + 0.03 � N

Interrupt Processing 6.5
System Call Processing(Ioctl) 1.0

4.1 Network Protocols and NICs

In network communication using existing protocols such as TCP/IP, when a message arrives

at a host, the message is passed to the host memory via an I/O bus, e.g., PCI. The host

processor handles the upper protocol layers, such as TCP/IP. Such protocol handling layers

across the NIC and the host incur some processing costs.

A modern NIC has an on-board processor and memory so that the data-link layer can be

handled by the NIC. Table 4.1 shows the basic costs of data transfer between host and NIC

memories and interrupt/system call processing. These costs were measured by executing

test programs on the NIC processor and the device driver for the host, using PCI Gigabit

Ethernet NIC plugged into a Pentium II 400 MHz PC (Red Hat 5.1, Linux 2.1.131). The

Gigabit Ethernet NIC is manufactured by an Essential Communications Inc.

In this section, the information exchange cost of TCP/IP is estimated using a model in

order to provide information to be used to design a communication facility.

4.1.1 Cost Estimation

Figure 4.1 and the following description show the data and control
ow for handling

TCP/IP in a typical implementation. This
ow does not re
ect the actual implemen-

tation, but rather focuses on the information movement between the host and the NIC. It

is assumed that the message send and receive bu�ers, and their descriptors are located in

38

4 Hardware Dependent Designs 4.1. Network Protocols and NICs

Kernel Memory Area

NIC

IP protocol handler

TCP protocol handler

User Memory Area

Host Machine

User Space

Kernel Space

Layer 2 handler

c2) Flag Set
 0.25 usec

N is the number of words (four bytes/word)

c1) System Call
 1.0 usec

c3) Interrupt
 6.5 usec

d2−1) Header and Descriptor Creation
 0.42 + 0.06 usec

d1) Memory Copy
 0.03 x N usec d1) Memory Copy

 0.03 x N usec

d3) Transfer from NIC to Host
 descriptor: 2.30 + 0.06 usec
 IP packet: 2.00 + 0.42 + 0.03 x N usec

d2−2) Transfer from Host to NIC
 descriptor: 2.30 + 0.06 usec
 IP packet: 2.30 + 0.42 + 0.03 x N usec

Figure 4.1: Data and Control Flow in TCP/IP Handling

the host memory. The cost is calculated based on Table 4.1.

� Transfer between the user and kernel spaces.

The user data is transferred to the kernel space by invoking a system call. It requires

a system call and memory copy cost as shown in c1) and d1) of Figure 4.1. The total

cost (Ca) is as follows.

Ca = 1:0 + 0:03 � N(words) �s:

� An IP packet transfer from the host to the NIC.

TCP/IP and an Ethernet headers are assembled with the data, and then the IP

packet is transferred to the NIC. A pointer, pointing to the header and data areas,

is stored in a message sender descriptor. In d2-1) of the �gure, it is assumed that

the header creation cost is the same as the header copy cost. The host tells the NIC

39

4 Hardware Dependent Designs 4.2. Design Objectives of GigaE PM

that the new descriptor is available. This cost is shown in c2). Then the NIC issues

a DMA so that the packet header and data are transferred to the NIC, whose cost is

shown in d2-2). The total cost (Cb) is as follows.

Cb = 5:81 + 0:03 � N �s:

� An IP packet transfer from the NIC to the host.

When an IP packet arrives at the NIC, the packet is transferred to the host. Then the

data-link layer handler in the NIC informs the host of the packet arrival by issuing

an interrupt signal. Those two costs (Cc) shown in d3) and c3) are as follows.

Cc = 11:28 + 0:03 � N �s:

4.1.2 Discussion

According to the above cost estimation, the cost for an N word message transfer from the

sender to the receiver is given by the following expression.

2 � Ca + Cb + Cc = 19:09 + 0:12 � N �s:

This shows that a one word message transfer requires 19.21 �s. For the total cost of a

message passing from the sender to the receiver, the TCP/IP protocol handling cost in the

host processor and the data-link layer protocol handling in the NIC must be added. To

implement the TCP/IP protocol, control packets, such as ACK, are passed between the

sender's and receiver's protocol handlers, where the communication cost between the host

and the NIC is 17.09 �s according to the cost estimation.

To ensure a high performance communication facility, the cost between the host and the

NIC shown above must be reduced as much as possible.

4.2 Design Objectives of GigaE PM

The GigaE PM design objectives are summarized as follows:

� Providing a simple network protocol for a parallel application:

A network protocol must not require large message bu�ers in order to communicate

with many processes.

40

4 Hardware Dependent Designs 4.3. GigaE PM Design

� Guaranteeing the reliability and FIFO-ness of message arrival:

Since Gigabit Ethernet does not guarantee message arrival, the network protocol

must support reliable communication.

� Realizing low information exchange overhead between the NIC and the

host:

As previously stated, the location of the information shared by the host and the NIC

dominates the information exchange overhead.

� Ensuring the coexistence of the GigaE PM protocol with other protocols

such as TCP/IP:

Since the communication facility is used in the LAN environment where other pro-

tocols such as TCP/IP are also used, the facility must support both the dedicated

protocol for high performance computation and traditional network protocols.

4.3 GigaE PM Design

4.3.1 Virtual Networks and API

The GigaE PM communication facility is designed to adapt to a parallel application.It pro-

vides a channel to support a virtual network which has been introduced in PM[THIS97] as

described in section 3.2.1. A communication on the channel is same as datagram commu-

nication with reliable reception, not connection oriented communication, such as TCP/IP.

Each process of a parallel application uses the same channel number exclusively which

represents a virtual network. The number of channels depends on the NIC's hardware

resources. In the current implementation, four channels are supported. To accommodate

the fact that parallel processes equal to more than the number of channels may run, the

SCore global operating system that multiplexes PM[THIS97] channels was developed.

The API of the GigaE PM is based on PM[THIS97]. Therefore, programs written for

the SCore Cluster System Software, including MPI, can be executed on top of the GigaE

PM. It should be noted that the GigaE PM is mainly used to implement upper level

communication libraries such as MPI.

41

4 Hardware Dependent Designs 4.3. GigaE PM Design

4.3.2 Where Should a Communication Protocol be Processed?

There are two choices as to where a communication protocol is processed: the host CPU

or the NIC CPU.

Handled in the host CPU: Because the host CPU is generally faster than NIC CPUs,

protocol processing on the host CPU will be faster than that on the NIC CPU.

However control messages to maintain reliable communication protocols must be

transferred through an I/O bus, such as the PCI bus, between host memory and NIC

memory. This transfer cost is more than 2 �s on the Essential Communications PCI

Gigabit Ethernet NIC as shown in Table 4.1.

Handled in the NIC CPU: If a NIC has a programmable on-board CPU and memory,

a communication protocol can be implemented on the NIC. This choice can eliminate

the overhead of control message transfer through an I/O bus such as a PCI bus.

A method by which the communication protocol should be handled on the NIC CPU is

selected in order to minimize the data exchange cost between the host and the NIC.

4.3.3 Reliable Communication

To guarantee message delivery and FIFO-ness, a protocol called Go-Back N for PM using

GO back N with STOP and GO
ow control has been adopted.

In theGO back N protocol, the sender may send the ith to the i+Nth data messages to

the receiver without waiting for an acknowledgment of message reception from the receiver.

That is, the i� 1th ACK message from the receiver has been received by the sender. The

receiver sends the ith ACK message back when the ith data message has been received

by the receiver. When the sender receives the ith ACK message, the sender may send the

i+ 1th to i+ 1 +Nth data messages to the receiver.

If the sender does not receive the ith ACK message after a certain time, the sender

sends the ith and the following data messages again. This happens when the ith data or

ACK message has lost. The sender needs to have a bu�er area to keep the ith to i +Nth

messages, but the receiver does not need to have a bu�er area to keep the N data messages.

42

4 Hardware Dependent Designs 4.3. GigaE PM Design

When the receiver receives a data message whose sequence number is larger than i, the

received data is discarded, and then a LOSE message is sent back to the sender. This

di�ers from the TCP/IP sliding window protocol.

When the receiver's bu�er area becomes full, a STOP message is sent to stop the sender.

The receiver will send a GO message when the receiver has enough bu�er area available.

This protocol is well known as STOP and GO
ow control.

The network protocol will be described in detail in Appendix B.

4.3.4 Information Exchange between the Host and the NIC

As described in section 4.1, information exchange between the host and the NIC is crucial

in the design of a high bandwidth and low latency communication facility. The information

is exchanged through a message descriptor. This entry has a message address, a message

size, and a sender or receiver identi�er depending on the type of message.

First of all, the location of descriptors and their access methods are designed as follows:

� Descriptor Location

The message descriptors can be located on either the host or the NIC. Since the

descriptors are accessed by both the host and the NIC, they should be located where

the total access time cost is minimized.

There are two choices:

1 The descriptors are in the host memory.

2 The descriptors are in the NIC memory.

When the descriptors are in the host memory, NIC DMA is required. When in the

NIC memory, the descriptors need to be written by the HOST CPU. From the costs

as shown in Table 4.1, the access cost is calculated (Table 4.2). From the results as

shown in Table 4.2, the descriptors are located on the NIC.

� Descriptor Access

If the user process writes a send message descriptor and informs the NIC that a new

43

4 Hardware Dependent Designs 4.3. GigaE PM Design

Table 4.2: Access Cost by Descriptors Location

Location (Method) Costs (4 Words Transfer)

1. Host Memory (Using NIC DMA) 2.4 �s
2. NIC Memory (Using HOST CPU) 1.3 �s

descriptor is ready, no kernel calls are required in sending a message. Two security

issues must be considered in this access:

1 send message descriptors must be isolated from other user processes so that the

user process only accesses the proper area,

and

2 the send message descriptor must be veri�ed because the user process might

have speci�ed a bad message address.

In the Essential Communications PCI Gigabit Ethernet NIC, the host can access to

the entire memory in the NIC by simply writing to a control register of the NIC.

If all send message descriptors are located on the NIC, accessing to a send message

descriptor requires writing to the control register. If the user has a write-access right

to the register, the user may write to other registers. Thus, the security issue on user

access as described above cannot be resolved on the Essential Communications NIC.

Therefore, GigaE PM provides a kernel function that accesses a message descriptor

on the NIC. Since the host can access a restricted memory area without writing to a

control register on the Essential Communications NIC, the receive message descriptors

are stored in this area so that the user process may read the message descriptor

without a kernel call.

� Trigger

The following methods for informing the NIC/host by the host/NIC must be consid-

ered:

From the Host to the NIC :

44

4 Hardware Dependent Designs 4.3. GigaE PM Design

Two methods can be used:

1 The host writes a
ag in the memory of the NIC.

2 The NIC polls a
ag area in the host.

Table 4.3: Access Cost by a Flag Location

Location (Method) Costs (1 Word Transfer)

1. NIC Memory (Using HOST CPU) 0.25 �s
2. Host Memory (Using NIC DMA) 2.41 �s

From the costs as shown in Table 4.1, the access cost is calculated (Table 4.3).

According to Table 4.3, we decided to adopt the method where the host processor

writes a
ag in the memory of the NIC.

From the NIC to the Host :

Here, there are three methods:

1 The NIC writes a
ag in the host's memory using the NIC DMA.

2 The host polls a
ag area on the NIC.

3 The NIC issues an interrupt signal to the host.

Table 4.4: Trigger Cost From the NIC to the Host

Method Costs

1. Using a Flag in the HOST Memory 2.03 �s
2. Using a Flag in the NIC Memory 0.57 �s
3. Using Hardware Interrupt 7.07 �s

From the costs as shown in Table 4.1, the access cost is calculated (Table 4.4).

According to Table 4.4, the host polls a
ag area on the NIC.

4.3.5 Host CPU Polling e�ects on PCI DMA transfer

Because frequent polling executed by the host CPU may cause degradation to the PCI DMA

transfer performance, the degradation of DMA transfer performance caused by polling is

measured.

45

4 Hardware Dependent Designs 4.3. GigaE PM Design

Figure 4.2: Host CPU Polling e�ects on PCI DMA transfer: Host to NIC

Figure 4.3: Host CPU Polling e�ects on PCI DMA transfer: NIC to Host

46

4 Hardware Dependent Designs 4.4. GigaE PM Implementation

Figures 4.2 and 4.3 show the results with the Intel 440BX chipset on the environment

shown in Table 4.7. The legend shows the period of polling in �s.

From Figures 4.2 and 4.3, when the polling period is set to 0.25 �s, the PCI DMA

bandwidth from host to NIC decreased to around 40 MB/s. The period should be set to

over 4 �s to realize over 80 MB/s PCI DMA bandwidth with the Intel 440BX chipset.

4.4 GigaE PM Implementation

4.4.1 Overview of the GigaE PM Implementation

This subsection describes an overview of GigaE PM implementation. GigaE PM consists

of GigaE PM �rmware on a Gigabit Ethernet NIC, a kernel driver for GigaE PM and the

GigaE PM user level library. An overview of GigaE PM is described as follows:

� The application interface is compatible with PM [THIS97, TOHI98] on Myrinet. The

basic application-program-interface is as follows:

{ PM getsendBuf(): gets a send message bu�er

{ PM sendmsg(): sends a message and releases the bu�er

{ PM receive(): receives a message

{ PM putreceiveBuf(): releases the receive message bu�er

� Send and receive message bu�ers are pre-allocated in the host memory, always pinned-

down to physical memory, and mapped into user space using mmap().

� Send and receive descriptors are in the NIC memory. The application writes a bu�er

address, a size and a destination to a descriptor using ioctl().

� The NIC registers are mapped to read-only user-memory-space.

� The NIC �rmware multiplexes (or de multiplexes) Ethernet frames for cluster and oth-

er communications. The cluster communication uses a special Ethernet-type frame.

� The maximum transfer units (MTU) of GigaE PM is 1,468 bytes, and currently,

GigaE PM does not support fragmented packets.

47

4 Hardware Dependent Designs 4.4. GigaE PM Implementation

� The polling period is set to 4 �s.

4.4.2 Overview of GigaE PM Message Handling

This subsection describes an overview of GigaE PM message handling (Figure 4.4).

User Memory Area

NIC Memory AreaSend Message
Descriptors

GigaE PM
Firmware

User Space

Kernel Space
GigaE PM

Driver

GigaE PM
Library

sc2)

sc3)

sd1)

User Memory Area

NIC Memory Area

Receive Message
Descriptors

User Space

Kernel Space
GigaE PM

Driver

GigaE PM
Library

rc3)

rc4)

rc1)

rd1)

Sending a Message Receiving a Message

GigaE PM
Firmware

 Descriptor
for User

sc1)
rc2)

Figure 4.4: Descriptors, Host, and NIC in GigaE PM

Sender:

1 The user program gets a send message bu�er using PM getsendBuf() as shown in

sc1) of Figure 4.4, and writes data into the bu�er. Then the user sends the message

using PM sendmsg().

2 The PM sendmsg() function, realized as the GigaE PM library, invokes the GigaE

PM driver in sc2) so that the driver writes message data (message address, message

length and receiver identi�er) to a descriptor on the NIC as shown in sc3).

3 The NIC will transfer the message in the user space to a NIC memory area as shown

in sd1).

Receiver:

48

4 Hardware Dependent Designs 4.4. GigaE PM Implementation

1 The PM receive() function, in the GigaE PM library, polls the arrival
ag in the

NIC without any kernel trapping as shown in rc1) of Figure 4.4. If the arrival
ag has

been set the receive message descriptor is read so that the message bu�er address,

message size, and the sender identi�er are obtained as shown in rc2) of Figure 4.4.

2 When the NIC receives a new incoming message, the message is transferred to a user

message bu�er whose area has been registered by the initialization routine of the

GigaE PM library in rd1). The NIC updates the arrival
ag.

3 The PM putreceiveBuf() function, realized by the GigaE PM library, invokes the

GigaE PM driver in rc3) to inform the NIC that the message bu�er has been released

in rc4).

4.4.3 TCP/IP and Other Protocol Support

The GigaE PM network protocol is handled on the NIC, while other network protocols such

as IP are handled on the host, the same as other Ethernet NICs do. When a network packet

whose type is not GigaE PM arrives, the packet is transferred to the host and a handler on

the host is triggered. Send and receive descriptors for TCP/IP and other protocols exist

in NIC memory so that the GigaE PM network protocol can be processed simultaneously

with TCP/IP.

4.4.4 Comparison of Cost and Bu�er Usage

Table 4.5 shows the comparison of cost in GigaE PM with that in TCP/IP for processing

an N word message. The costs in the GigaE PM are estimated from subsection 4.4.2.

In Table 4.5, the one word message transfer cost from the sender to the receiver in GigaE

PM is 9.89 �s. The cost in TCP/IP is 19.21 �s. The cost reduction is 48.5% in GigaE PM.

In TCP/IP, the interrupt processing cost (6.5 �s, Figure 4.1 c3) and descriptor transfer

cost using NIC DMA (4.72 �s, Figure 4.1 d2-2, d3) occupy 58.4% of the total cost. This

is because GigaE PM uses polling method instead of hardware interrupt used in TCP/IP,

and the descriptor location of GigaE PM is in the NIC memory so that descriptor transfer

is not needed by NIC DMA.

49

4 Hardware Dependent Designs 4.5. GigaE PM Evaluation

Table 4.5: Comparison of Cost in an N Word Message

Description TCP/IP (�s) GigaE PM (�s)

System Call and Copy 1:0 + 0:03 � N 1:0
Sending a Message 5:81 + 0:03 � N 3:30 + 0:03 � N
Receiving a Message 11:28 + 0:03 � N 4:53 + 0:03 � N
Sending and Receiving 19:09 + 0:12 � N 9:83 + 0:06 � N
a Message

Sending and Receiving 17.09 0
an ACK

Table 4.6: Comparison of Memory Usage in an N node Cluster

Description TCP/IP (KB) GigaE PM (KB)

N Node Cluster
Send Bu�er Size 1:5 � M � N 120
Receive Bu�er Size 1:5 � M � N 128
Control Structure Size 0:274 � N 0:023 � (N + 1)

128 Node Cluster(M=8)
Send Bu�er Size 1536 120
Receive Bu�er Size 1536 128
Control Structure Size 35:072 2:967

Table 4.6 shows the comparison of memory usage in GigaE PM and memory usage in

TCP/IP in an N node cluster. In Table 4.6, the MTU of TCP/IP is 1.5KB, and 1.5 � M

shows the window size of TCP/IP.

In Table 4.6, the send and receive bu�er memory size of GigaE PM does not depend on

the number of nodes. GigaE PM requires send and receive bu�er memory whose size needs

only 8.01 % of that of TCP/IP, and control structure memory whose size needs only 8.46

% of that of TCP/IP in a 128 node cluster.

4.5 GigaE PM Evaluation

The basic performance, bandwidth and latency, and MPI application performance using

NAS parallel benchmarks are measured and compared with those of TCP/IP in this section.

50

4 Hardware Dependent Designs 4.5. GigaE PM Evaluation

4.5.1 Evaluation Environment

Table 4.7 shows the evaluation environment of GigaE PM. The evaluation of GigaE PM

is done with or without Ethernet switch. The evaluation of TCP/IP always uses Ethernet

switch.

Table 4.7: Evaluation Environment for GigaE PM

Hardware
Pentium 400 MHz, 440BX chipset,
256 MB SDRAM memory
Essential PCI Gigabit Ethernet NIC

NIC
model EC-440-SF
(32 bit 33 MHz PCI, DMA for PCI,
SEEQ 8100 MAC and MEM 1MB)

Switch Extreme's Summit 1
Host OS Red Hat 5.1 (Linux 2.1.131)

NAS parallel benchmarks are used as application programs. The Numerical Aerospace

Simulation (NAS) Parallel Benchmarks (NPB) are a set of 8 programs designed to evaluate

the performance of parallel supercomputers. NPB will be described in detail in Appendix

C.

4.5.2 PM Bandwidth

The bandwidth is shown in Figure 4.5. The �gure contains performance data for GigaE

PM, TCP/IP on GigaE PM, and TCP/IP developed by the Essential Communications

company. GigaE PM has achieved a 56.7 Mbytes/sec bandwidth in the case of a 1,468 byte

message. In contrast to GigaE PM, TCP/IP on GigaE PM achieves 28.05 Mbytes/sec, and

TCP/IP on the Essential achieves 32.96 Mbytes/sec in the case of a 1,280 byte message.

The communication bandwidth of GigaE PM is 1.7 times faster than that of TCP/IP.

4.5.3 PM Round Trip Latency

Figure 4.6 shows the round trip time cost. GigaE PM achieved a 48.3 �s round trip

latency with a four byte user message. When a Summit 1 switch is inserted between the

51

4 Hardware Dependent Designs 4.5. GigaE PM Evaluation

10

20

30

40

50

60

70

80

200 400 600 800 1000 1200 1400 1600

T
hr

ou
gh

pu
t (

M
B

/s
)

Payload Length (Bytes)

Application Level Bandwidth

GigaE PM with Switch
GigaE PM without Switch

TCP/IP on GigaE PM
TCP/IP on ESS Firmware

Figure 4.5: GigaE PM Bandwidth

two hosts, the latency increases to 58.3 �s. This means that the message transfer latency

on the switch is 5 �s.

The round trip latency of TCP/IP on the Essential �rmware is 414.0 �swhile the TCP/IP

latency on GigaE PM is 131.4 �s. GigaE PM realizes better performance coexisting with

the high performance network protocol. The communication latency of GigaE PM is about

one third of that of TCP/IP.

4.5.4 NAS Parallel Benchmarks

MPICH-PM (based on MPICH 1.0.11) on top of GigaE PM was implemented, and the

application performance using the CG (Conjugate Gradient) and IS (Integer Sort) programs

of the NAS parallel benchmarks, version 2.3 is evaluated. The MPI for TCP/IP was MPICH

1.0.11 with the ch p4 device.

Figures 4.7 and 4.8 show the performance of CG and IS whose sizes are class S. MPI on

52

4 Hardware Dependent Designs 4.6. Related Work of GigaE PM

0

100

200

300

400

500

600

700

0 200 400 600 800 1000 1200 1400 1600

R
ou

nd
 T

rip
 T

im
e

(u
se

c)

Payload Length (Bytes)

Application Level Round Trip Latency

GigaE PM with Switch
GigaE PM without Switch

TCP/IP on GigaE PM
TCP/IP on ESS Firmware

Figure 4.6: GigaE PM Round Trip Time

top of GigaE PM achieves a 3.63 fold speedup for CG with a 2.0 fold speedup for IS on 4

nodes. The MPI on top of TCP/IP achieves a 1.72 fold speedup for CG with a 1.37 fold

speedup for IS on 4 nodes. The results show that the IS performance on the GigaE PM

is 1.8 times faster than that on TCP/IP. Because the CG and IS benchmarks are latency

and bandwidth sensitive, these results re
ect the low latency and high bandwidth of GigaE

PM.

4.6 Related Work of GigaE PM

Many high performance communication facilities have been developed. AM[T. 92][T. 94],

AM-II[CMC97], FM[Sco95], BIP[PT98], VMMC-2[DBC+97] and PM[THIS97] are based

on Myrinet. Unlike the Gigabit Ethernet, the Myrinet network supports reliable message

transfer at the hardware level. Thus, those facilities do not need to worry about a message

being lost in the network.

53

4 Hardware Dependent Designs 4.6. Related Work of GigaE PM

0

20

40

60

80

100

120

140

160

1 2 3 4

M
op

/s
 to

ta
l

of PEs

GigaE PM
TCP/IP on GigaE PM

TCP/IP on ESS

Figure 4.7: CG Class S on GigaE PM

To decrease the kernel trapping overhead, PM and U-Net[BBVvE97] don't use system

calls. PM achieves a 15 microsecond round trip time and 113 MBytes/sec bandwidth in a

Myricom Myrinet network. Thus, the kernel trapping overhead is crucial. However, in the

GigaE PM, the kernel trapping overhead is 2.0 �s of 48.3 �s round trip time, or only 4.1

% of round trip time overhead. It is not considered crucial.

VIA[VIA], the Virtual Interface Architecture, is being widely implemented in Gigabit

class networks on the Microsoft Windows operating system. VIA is designed so that other

communication facilities such as sockets[Ste] and MPI are implemented on top of VIA.

VIA supports connection oriented communication. Reliable communication support is an

option according to the VIA speci�cation Version 1.0. As described in section 4.1, if a

reliable connection oriented communication facility is realized using an unreliable network

such as Gigabit Ethernet, larger communication bu�ers are required. Such a facility cannot

be implemented on a NIC. Thus, we think that it is diÆcult to support high performance

communication for parallel applications, especially data parallel applications on connection

54

4 Hardware Dependent Designs 4.7. Conclusions of This Chapter

0

4

8

12

16

20

1 2 3 4

M
op

/s
 to

ta
l

of PEs

GigaE PM
TCP/IP on GigaE PM

TCP/IP on ESS

Figure 4.8: IS Class S on GigaE PM

oriented communication.

Since the GigaE PM protocol is simple and does not require large message bu�ers, unlike

other connection oriented communication facilities, the handler is implemented on a NIC

and provides reliable communication on top of the Gigabit Ethernet.

4.7 Conclusions of This Chapter

In this chapter, it has been pointed out that information exchange between the NIC and

the host is crucial in the design of high performance communication for parallel appli-

cations on clusters of computers using Gigabit Ethernet. Therefore, a high performance

communication facility called GigaE PM has been designed. A prototype system has been

implemented using an Essential Communications Gigabit Ethernet card.

The GigaE PM facility provides not only a reliable high bandwidth and low latency com-

munication function but also supports existing network protocols such as TCP/IP. Using

55

4 Hardware Dependent Designs 4.7. Conclusions of This Chapter

this facility, a high performance cluster system is constructed on a distributed environment

where parallel applications coexist with distributed applications.

The performance results show that a 48.3 microsecond round trip time for a four byte

user message and a 56.7 MBytes/sec bandwidth for a 1,468 byte message are achieved.

The communication latency of GigaE PM is about one third of that of TCP/IP, and the

communication bandwidth of GigaE PM is 1.7 times faster than that of TCP/IP.

GigaE PM also supports the TCP/IP protocol without decreasing the performance of the

original Gigabit Ethernet card. The performance results, using NAS parallel benchmarks,

show that the IS class S performance on the GigaE PM is 1.8 times faster than that on

TCP/IP.

GigaE PM is not limited only to the Essential Communications NIC, rather it is a general

facility which can be implemented on other modern NICs.

In the results of this study, a communication facility which depends on a NIC hardware

should be implemented as follows:

� The NIC should have a programmable on-board CPU and memory in order to im-

plement a communication protocol on the NIC. Go-Back N for PM, a light-weight

protocol is proposed so that it can be implemented on a NIC CPU.

� The descriptors of the message bu�er should be located in the NIC memory in order

to minimize descriptor access cost caused by the NIC.

� A polling method should be used in triggering from the NIC to the host. But the

short polling period may cause PCI DMA performance degradation.

56

Chapter 5

Hardware Independent Designs

Using Existing NICs

This chapter proposes software designs that do not depend on NIC hardware using existing

NICs. A Reliable protocol must be implemented on a host CPU using an existing NIC,

so, the cost of the existing communication protocol, TCP/IP, is analyzed. Then, new

software techniques are proposed to achieve higher performance than that using an existing

protocol such as TCP/IP. These techniques do not require any special hardware or hardware

speci�c device drivers in order to be adapted to many kinds of network interface cards.

PM/Ethernet has been implemented using these techniques, and then evaluated.

57

5 Hardware Independent Designs 5.1. Design Objectives of Cluster Communication

5.1 Design Objectives of Cluster Communication on

a Commodity Network

The characteristics of commodity networks are summarized as follows:

� Many vendors provide many kinds of NIC hardware.

� The lifetime of hardware is relatively short because of vendor competition. So, the

same hardware may not be available in the future.

The design objectives of cluster communication on a commodity network can be sum-

marized as follows:

1 Applicability to many kinds of NIC hardware.

Currently, if we develop a cluster communication facility which depends on hardware,

we must develop and support a number of NICs. Therefore, cluster communication

facilities for a commodity network should be independent of hardware in order to

apply to many kinds of NICs. This approach uses a device driver without any mod-

i�cation to the source code of the device driver, so the performance depends on the

device driver code.

2 Coexistence of a cluster communication protocol with other existing protocols such

as TCP/IP.

Since cluster communication is used in the LAN environment where other existing

protocols such as TCP/IP are also used, both the cluster communication protocol for

high performance computation and traditional network protocols should be processed

on the same NIC.

5.2 TCP/IP Protocol Processing Overhead

As shown in Figure 5.1, typical protocol handling layers in Linux and Unix-based op-

erating systems contain NICs, device drivers, a data link layer such as Ethernet, IP and

TCP protocol handling layers, and a Socket layer. In this section, performance in those

protocol layers is measured and then the protocol handling overheads are analyzed. Table

5.1 shows the evaluation environment.

58

5 Hardware Independent Designs 5.2. TCP/IP Protocol Processing Overhead

Socket

TCP

IP

Device Driver

NIC Hardware

Data Link(Ethernet) Kernel

Device Driver

NIC Hardware

User Program User

ICMP

Figure 5.1: TCP/IP Protocol Processing in Unix

Table 5.1: Evaluation Environment for TCP/IP

Hardware
Pentium III 500MHz
(440BX chipset, 512MB SDRAM)
Packet Engines G-NIC II

NIC 33 MHz clock, 64 bit PCI
using 32 bit PCI slot

Host OS Redhat 6.1 Linux (2.2.12 kernel)
Device Driver hamachi.c:v0.11 8/21/99
for G-NIC II Written by Donald Becker

5.2.1 Performance in Protocol Layers

To investigate the communication performance of each protocol layer, round trip time in

the data link layer, IP, and TCP/IP protocol layers was measured. Bandwidth in the data

link layer and TCP/IP protocol layer was also measured.

The Netperf program[NET] was used to measure the TCP/IP round trip time. The ICMP

protocol was used to measure the IP round trip time. To measure the round trip time and

59

5 Hardware Independent Designs 5.2. TCP/IP Protocol Processing Overhead

bandwidth in the data link layer of Ethernet, the following programs were implemented in

the device driver:

� Round trip time: The sender sends an Ethernet frame to the receiver while the

receiver sends back an Ethernet frame whenever the sender's frame is received.

� Bandwidth: The sender sends an Ethernet frame to the receiver while the receiver

receives and drops the sender's frame. The bandwidth is measured at the receiver

side.

Table 5.2 shows round trip time in the data link, IP, and TCP/IP protocol layers.

Table 5.2: Round Trip Time and Bandwidth in Protocols

Layer RTT Bandwidth

Data Link 36.6 �sec 90.4 MB/sec
IP 58.6 �sec -
TCP/IP 89.6 �sec 46.7 MB/sec

5.2.2 TCP/IP Protocol Processing Overhead Analysis

Table 5.3 shows the result of the TCP/IP protocol overhead which was analyzed as follows:

� System Call and Socket

This overhead was measured by the Pentium III hardware clock counter.

� TCP

Half of the TCP round trip time is the sum of half of the IP round trip time and

the TCP protocol handling overhead. Thus the TCP protocol handling overhead is

derived as follows:

89:6=2� 58:6=2 = 15:5

� IP

Half of the IP round trip time is the sum of the system call and socket overhead,

60

5 Hardware Independent Designs 5.2. TCP/IP Protocol Processing Overhead

protocol handler invocation overhead, and half of the data link layer overhead. Thus

the IP cost is derived as follows:

58:6=2� 1:6� 3:2� 36:6=2 = 6:2

� Protocol Handler Invocation

Protocol handler invocation means the protocol context switch from the data link

layer to an upper protocol, such as the IP protocol, using a software interrupt. This

overhead was measured by the hardware clock counter.

� Device Driver

This overhead is given by the execution time of a device driver written in C. It was

measured by the hardware clock counter.

� Hardware Interrupt

This cost is given by the time to reach the device driver routine after the NIC asserts

the processor interrupt register. This cost was measured using the Essential Gigabit

Ethernet NIC �rmware. It is 5.9 �sec because the hardware overhead is 1.6 �sec, and

the Linux interrupt handler accesses the register of the interrupt controller 4 times

(1.2 �). Other software overhead such as context store and device entry search are

also �gured in. This hardware interrupt cost does not depend on processor clock

speed (Appendix A.2).

� NIC+Media

Half of the data link layer round trip time is the sum of the device driver, hardware

interrupt, and NIC+media costs. Thus the NIC+media cost is derived as follows:

36:6=2� 4:7� 5:9 = 7:7

According to Table 5.3, the dominant portion of overhead is TCP/IP protocol processing,

48.4% (34.6 + 13.8) of total overhead. The second highest overhead, which the software

can reduce, is interrupt processing overhead.

61

5 Hardware Independent Designs 5.3. A Protocol Handling Scheme Design

Table 5.3: TCP/IP Overhead

Processing Overhead Ratio

System call and socket 1.6 �sec 3.6 %
TCP 15.5 �sec 34.6 %
IP 6.2 �sec 13.8 %
Protocol Handler Invocation 3.2 �sec 7.1 %
Device Driver 4.7 �sec 10.5 %
Hardware Interrupt 5.9 �sec 13.2 %
NIC+Media 7.7 �sec 17.2 %
Total 44.8 �sec 100.0 %

5.3 A Protocol Handling Scheme Design

This section proposes a communication protocol handling scheme for a cluster system

using a commodity network. An approach realizing a communication facility with machine

independence is taken in this scheme in order to adapt to many kinds of NICs, as described

in section 5.1.

5.3.1 Protocol Handling for Cluster Computing

In the TCP/IP protocol implementation in Linux and Unix-based systems, the protocol

handler is invoked as a kernel thread using a software interrupt mechanism.

This is because of the following assumption: a network is slower than other devices such

as a hard disk drive. It is a good design assumption on a network computer where a

keyboard, a mouse, and hard disk drives are installed.

However, the assumption is not suitable to high performance networks, such as Gigabit

Ethernet. Therefore, a method, in which the communication protocol handler is invoked

by the network data link layer directly, is proposed in order to minimize message latency.

5.3.2 A Light-weight Reliable Communication Protocol

According to Table 5.3, TCP/IP protocol processing overhead occupies 48.4% of the total

overhead. This overhead must be minimized. However, when the network does not support

62

5 Hardware Independent Designs 5.3. A Protocol Handling Scheme Design

reliable message transfer at the hardware level, as is the case with Ethernet, message

delivery and FIFO-ness must be guaranteed. Therefore the Go-Back N for PM protocol

proposed in section 4.3 is used to guarantee them.

5.3.3 The Interrupt Reaping Technique

When a parallel application, especially a data parallel application, waits for a message,

the message must be processed as soon as possible when it is received. However, in the

traditional kernel, when the application issues a primitive to receive a message but no

message has arrived, the application is suspended to wait for a message.

Figure 5.2 (a) shows sequences of existing message handling techniques using a hardware

interruption upon message reception. The sequences are as follows:

1 When a message comes, the NIC hardware triggers a hardware interruption after

�nishing the message transfer by DMA and setting a �nish
ag to a descriptor(or

register).

2 The interruption processing is handled on the host kernel after the hardware interrupt.

This processing consists of interrupt control, device driver entry search, etc. This

takes 5.9 �sec as described in Table 5.3.

3 Device driver processing is executed and handles received messages.

4 Then host user processing handles the message.

The Interrupt Reaping technique is proposed to avoid hardware interrupt overhead. In

Interrupt Reaping, the handler for the device driver is executed by the user program directly

when an application is going to wait for a message (Figure 5.2 (b)).

Figure 5.2 (b) shows the message handling sequences using this Interrupt Reaping tech-

nique on message reception. The sequences are as follows:

1 When a message comes, the NIC hardware triggers a hardware interrupt after �nish-

ing the message transfer by DMA and setting a �nish
ag to a descriptor(or register).

63

5 Hardware Independent Designs 5.3. A Protocol Handling Scheme Design

2 A user program processes a message receive primitive and calls device driver process-

ing using a system call.

3 When a message has arrived and the device driver receives it, the handler turns o�

the interrupt register so that the hardware interrupt will not be activated.

4 Then host user processing handles the message.

When a message comes while the user program is not processing a message receive

primitive, the message is handled by a hardware interrupt, the same as in Figure 5.2 (a).

Since the Interrupt Reaping technique is only used when an application program waits

for a message and has nothing to do, the overhead of calling device driver processing using

a system call is not considered crucial.

5.3.4 Cluster Communication and Existing Network Protocols

To realize the coexistence of a cluster communication protocol with other existing protocols,

the cluster communication uses a special type of packet, and the data link de-multiplexes

protocols for cluster and existing communication.

As described in subsection 5.3.1, the cluster communication protocol is handled on the

network data link layer. So, message handling sequences on message reception are as

follows: when the data link layer receives a packet whose type is that of the cluster com-

munication protocol, the data link layer handles the packet directly. And, when the data

link layer receives a packet whose type is di�erent from that of the cluster communication

protocol, the data link layer enqueues the packet to an appropriate protocol queue, and

triggers a software interrupt to process the packet on the upper protocol layer.

5.3.5 Interrupt Reaping and Existing Network Protocols

The Interrupt Reaping technique as described in subsection 5.3.3 is e�ective in cluster

communication. However, the technique has a scheduling issue between processes which

use existing network protocols and processes which use a cluster communication protocol

in an environment where existing network protocols are also used.

To solve this scheduling issue, the following methods should be used.

64

5 Hardware Independent Designs 5.3. A Protocol Handling Scheme Design

DMA

1. Finish DMA,
Set Message
Arrival Flag

Trigger
Interrupt

3. Device Driver
Processing

Time

NIC
Processing

Host Kernel
Processing

(a) Normal Message Handling

DMA

1. Finish DMA,
Set Message
Arrival Flag

Trigger
Interrupt

Time

NIC
Processing

(b) Message Handling using
Interrupt Reaping

5.9 usec

3. Device Driver
Processing

Host Kernel
Processing

Host User
Processing

2. Interrupt
Processing

Host User
Processing

Suspended

2. Call

4. Message Processing

4. Message Processing

Figure 5.2: The Interrupt Reaping Technique

The process which processes the technique:

� Must not suspend the process while disabling interrupt in order to encourage other

interrupts.

� Must not suspend the process in kernel until a message comes in order to encourage

65

5 Hardware Independent Designs 5.4. Implementation of PM/Ethernet

context switching to other processes.

� Should limit the use of the technique in a speci�ed time period in order to increase

eÆciency.

As described in subsections 5.3.3 and 5.3.4, the interrupt handler used in the Interrupt

Reaping technique handles not only the packets of cluster communication protocols but

also the packets of existing network protocols. So, packets of existing network protocols

can be handled in an upper protocol using a software interrupt, and other processes which

use the cluster communication protocol or an existing network protocol can coexist.

5.4 Implementation of PM/Ethernet

PM/Ethernet is an implementation of the scheme proposed in Section 5.3.

5.4.1 PM/Ethernet Architecture

PM/Ethernet provides same APIs of PM on Myrinet and GigaE PM.

As shown in Figure 5.3, PM/Ethernet consists of a user level library, the PM/Ethernet

protocol handling routine, a protocol dispatcher in the Ethernet data link layer, and ordi-

nary Ethernet drivers.

At message sending using the PM/Ethernet library, the PM/Ethernet protocol handling

routine assembles an Ethernet frame and calls the Ethernet device driver to send it.

Upon message reception, an arrival message is received by the device driver and then the

dispatcher in the Ethernet data link layer calls the PM/Ethernet protocol handling routine

if the message type is PM/Ethernet, otherwise it invokes the existing protocol handler.

5.4.2 Implementation on Linux

PM/Ethernet has been implemented on the Linux operating system, modifying operating

system kernel sources. Most of the PM/Ethernet code is realized as a Linux device driver,

but some modi�cations are applied to the original Linux kernel sources. The following are

modi�cations to the Linux 2.2.12 kernel source code.

66

5 Hardware Independent Designs 5.4. Implementation of PM/Ethernet

Socket

TCP or Existing
Protocols

IP or Existing
Protocols

Device Driver

NIC Hardware

Data Link Layer (Ethernet) Kernel

Device Driver

NIC Hardware

User Program

User

PM/Ethernet
(Reliable
Protocol

Processing)

PM/Ethernet
 Library

Figure 5.3: The PM/Ethernet Architecture

� The device interrupt handler is registered in the network device driver structure so

that it is called by a kernel primitive.

� A dispatcher for the PM/Ethernet Ethernet frame is added in the data link layer.

� A PM/Ethernet device driver is added to operate the PM/Ethernet communication

protocol and user interface. This driver also supports dynamic device driver loading.

The following is an overview of PM/Ethernet:

� Send and receive message bu�ers are pre-allocated in host memory, always pinned

down to prevent swapping, and also mapped into user space using the mmap() system

call.

67

5 Hardware Independent Designs 5.4. Implementation of PM/Ethernet

� At message sending, a user program gets a send message bu�er using the pmGetSendBuffer()

function, it allocates the bu�er from the bu�er pool mapped to user memory space,

and the user program writes data to the bu�er. Then the user sends the message

using the pmSend() function. The PM/Ethernet driver in the Linux kernel builds a

header which includes an Ethernet frame and a PM/Ethernet header, and calls the

transmit message handler of the Ethernet device handler. In these sequences, there

is no data copy performed.

� At message receiving, when the data link layer receives a packet whose type is the

cluster communication protocol, the data link layer calls the PM/Ethernet message

handler directly, processes cluster communication, and copies the message data from

the message bu�er of Linux to the receive bu�er.

5.4.3 Implementation of Interrupt Reaping

Message reception on PM/Ethernet is implemented using the following code.

// on message receive processing in ioctl() function.

if(ret = epm_get_message(channel) == NO_MESSAGE)) {

disable_interrupt(); // disable interrupt

do_interrupt_handler(); // execute handler

enable_interrupt(); // enable interrupt

ret = epm_get_message(channel);

}

return ret;

The do interrupt handler() calls a device driver interrupt handler. Upon message

reception, a user program calls this device driver function using a system call. When a user

program wants to wait until a message is coming, the user program needs to execute wait

loops.

68

5 Hardware Independent Designs 5.5. Evaluation

5.4.4 Multi processes and SMP Support

On the Linux version 2.2.12 kernel, only one process can execute the ioctl system call by

locking on the kernel entry, so there is no need for locking.

However, on an SMP system, a locking mechanism is needed between processes which

execute Interrupt Reaping and interrupt processing caused by hardware interrupts. To

provide this mechanism, PM/Ethernet replaces the original interrupt handler of the device

driver with the do interrupt handler() described below. This code shows that a process

does nothing while the other process executes interrupt processing.

do_interrupt_handler() {

if (test_and_set_bit(0, &intr_flags) != 0) return;

do_original_interrupt_handler();

clear_bit(0, &intr_flags);

}

5.5 Evaluation

5.5.1 Basic Application Level Communication Performance

The basic application level communication bandwidth and latency for PM/Ethernet are

measured and compared with that of TCP/IP and PM on Myrinet[THIS97] in this subsec-

tion. Table 5.1 shows the evaluation environment. A Gigabit Ethernet switch is not used

in this evaluation. The netperf-2.1pl3[NET] benchmark program for TCP/IP performance

measurement was used.

The bandwidth is shown in Figure 5.4. In Figure 5.4, IR means Interrupt Reaping. The

PM/Ethernet achieves 77.5 MB/sec of bandwidth with a 1,468 byte message. In contrast to

the PM/Ethernet, TCP/IP achieves 46.7 MB/sec of bandwidth with a 1,280 byte message.

The communication bandwidth of PM/Ethernet is 1.6 times faster than that of TCP/IP.

PM/Ethernet without Interrupt Reaping achieved 64.6 MB/sec of bandwidth with a

1,468 byte message.

Figure 5.5 shows the round trip time. PM/Ethernet achieved a 37.6 �sec round trip time

with a four byte user message. The round trip time on TCP/IP was 89.6 �sec while the

69

5 Hardware Independent Designs 5.5. Evaluation

0

20

40

60

80

100

200 400 600 800 1000 1200 1400 1600

T
hr

ou
gh

pu
t (

M
B

/s
)

Payload Length (Bytes)

Application Level Bandwidth

PM/Ethernet
PM/Ethernet w/o IR

TCP/IP

Figure 5.4: Application Level Bandwidth

time on PM/Ethernet was 37.6 �sec. PM/Ethernet without Interrupt Reaping achieved a

47.6 �sec round trip time. The communication latency of PM/Ethernet is about one third

of that of TCP/IP.

5.5.2 NAS Parallel Benchmarks (NPB)

NPB IS Class A on a Uni-processor Cluster:

Figure 5.6 shows the results of using the NAS parallel benchmarks (Appendix C). ver-

sion 2.3, IS Class A. All NAS parallel benchmarks have been executed. The LAM MPI

implementation [LAM] was used to measure MPI on TCP/IP. The 3Com Super Stack II

9300 Gigabit Ethernet switch was used on this benchmark.

MPI on top of PM/Ethernet achieves an 11.8 fold speedup for IS on 16 nodes. MPI on

top of PM/Ethernet without Interrupt Reaping achieves an 11.2 fold speedup for IS on 16

nodes. MPI on top of TCP/IP achieves a 5.2 fold speedup for IS on 16 nodes.

The results show that the IS performance on PM/Ethernet is 1.75 times faster than that

70

5 Hardware Independent Designs 5.5. Evaluation

0

50

100

150

200

250

300

200 400 600 800 1000 1200 1400 1600

R
ou

nd
 T

rip
 T

im
e

(u
se

c)

Payload Length (Bytes)

Application Level Round Trip Latency

PM/Ethernet
PM/Ethernet w/o IR

TCP/IP

Figure 5.5: Application Level Round Trip Time

on TCP/IP. Because the IS benchmarks are latency and bandwidth sensitive (Appendix

C), these results re
ect the low latency and high bandwidth of PM/Ethernet.

NPB LU Class A on an SMP Cluster:

Figure 5.7 shows the results of using NAS parallel benchmarks version 2.3 LU Class A

on a Dual Pentium III 500MHz 16 node SMP Cluster, and compares the performance of

PM/Ethernet on Gigabit Ethernet and Fast Ethernet with the Interrupt Reaping technique.

The NIC of Fast Ethernet is an Intel EEPRO100, and the NIC is not only used for cluster

communication but also used for IP communication, such as NFS and remote shell program

for process dispatching. In the legend of Figure 5.7, SMP means two processes are running

on each node, the GE means Gigabit Ethernet, and the FE means Fast Ethernet.

Figure 5.7 shows that the PM/Ethernet with the Interrupt Reaping technique can run on

an SMP cluster, and that cluster communication and the existing IP protocol can coexist.

71

5 Hardware Independent Designs 5.5. Evaluation

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14 16

T
ot

al
 M

op
s

Nodes

NAS Parallel Benchmark IS (Class A)

MPICH(PM/Ethernet)
MPICH(PM/Ethernet w/o IR)

MPI/LAM(TCP/IP)

Figure 5.6: NPB IS (Class A) on PM/Ethernet

5.5.3 The E�ect of the Interrupt Reaping Technique

As described in subsection 5.5.1, PM/Ethernet achieved a 37.6 �sec round trip time with a

four byte user message with Interrupt Reaping, and without Interrupt Reaping it achieved

a 47.6 �sec round trip time. This result shows that Interrupt Reaping eliminated 10.0 �sec

of hardware interrupt overhead in round trip time. The di�erence of 0.9 �sec between

the hardware interrupt cost of 5.9 �sec from Table 5.3 and the cost of 5.0 �sec, which is

eliminated by Interrupt Reaping, is the cost to call the hardware device interrupt handler

in 1/2 of the round trip time.

Also, as described in subsection 5.5.2, IS Class A performance on PM/Ethernet with

Interrupt Reaping is 5 % faster than that of PM/Ethernet without Interrupt Reaping.

Table 5.5 shows a comparison of the number of interrupts with (and without) the Inter-

rupt Reaping technique. These are a sum of the count on all nodes and are calculated from

72

5 Hardware Independent Designs 5.5. Evaluation

0

500

1000

1500

2000

2500

3000

3500

0 5 10 15 20 25 30

T
ot

al
 M

op
s

Number of PE

NPB2.3 LU Class A Results on SMP Cluster

PM/Ethernet(MPICH/SCore) on 100BaseT
PM/Ethernet(MPICH/SCore) on GigaEther

PM/Ethernet(MPICH/SCore) SMP on 100BaseT
PM/Ethernet(MPICH/SCore) SMP on GigaEther

Figure 5.7: NPB LU (Class A) on an SMP Cluster

Table 5.4: Number of Interrupts on IS

IS
Interrupt Reaping

Improvement
With Without

4 PE 70492 92235 23.6%
16 PE 132599 145818 9.1%

the results of the /proc/interrupts. Table 5.4 shows that the Interrupt Reaping technique

reduces the number of interrupts on a real MPI application.

Table 5.5 shows the Interrupt Reaping e�ects on other platforms, a G-NIC II on an

Alpha 21264 500MHz CPU with a 64bit PCI (Compaq XP1000), and an Intel PRO/1000

Gigabit Server Adapter (E1000), and an Intel EEPRO100 (100BaseT) on an Intel Pentium

III 500MHz PC. IR means Interrupt Reaping. Table 5.5 shows that the Interrupt Reaping

technique is e�ective on other platforms.

73

5 Hardware Independent Designs 5.5. Evaluation

Table 5.5: Interrupt Reaping on Other Platforms

Processor, RTT RTT Bandwidth Bandwidth
NIC w/ IR w/o IR w/ IR w/o IR

Alpha 21264, 44.6 49.8 96.7 82.5
G-NIC II �sec �sec MB/s MB/s

Pentium III, 70.1 108.0 71.0 71.2
Intel E1000 �sec �sec MB/s MB/s

Pentium III, 106.4 128.2 11.9 11.8
EEPRO100 �sec �sec MB/s MB/s

5.5.4 PM/Ethernet Protocol Processing Cost Analysis

Table 5.6 shows a comparison of protocol processing cost analyses between TCP/IP and

PM/Ethernet on 1/2 of the round trip time. The evaluation environment is the same as

that of Table 5.1.

Table 5.6: Comparison of Protocol Processing Cost Analysis on 1/2 of the Round Trip
Time

Processing TCP/IP PM/Ethernet

User Program,
System Call and Socket 1.6 �sec 1.6 �sec
TCP 15.5 �sec -
IP 6.2 �sec -
Light-weight Protocol - 4.8 �sec
Protocol Handler 3.2 �sec -
Invocation
Device Driver 4.7 �sec 4.7 �sec
Hardware Interrupt 5.9 �sec -
NIC+Media 7.7 �sec 7.7 �sec
Total 44.8 �sec 18.8 �sec

PM/Ethernet eliminates 77.9% of the communication protocol cost compared with TCP/IP

using a light weight communication protocol, and eliminates the costs of protocol context

switching and hardware interrupts using the Interrupt Reaping technique.

74

5 Hardware Independent Designs 5.6. Related Work of PM/Ethernet

5.6 Related Work of PM/Ethernet

U-NET[BBVvE97] also achieves low latency and high bandwidth communication using user

level communication. Fast Traps using a trap gate in U-NET/MM[MW97] is only useful

for Intel machines to reduce the overhead of system calls. The Interrupt Reaping technique

is CPU architecture independent.

GAMMA[CC00] achieves low latency and high bandwidth communication using kernel

level communication and 100 Mbps Ethernet, and also provides existing network protocols,

such as TCP/IP. However, GAMMA does not provide reliable communication, so a program

fails when a message is lost. And, the implementation of GAMMA is dependent on NIC

device drivers.

AM[T. 92], AM-II[CMC97], GM[GM], FM[Sco95], BIP[PT98], VMMC-2[DBC+97] and

PM[THIS97] are based on Myrinet, and achieve low latency and high bandwidth commu-

nication using user level communication and �rmware on a Myrinet NIC. VIA[VIA], the

Virtual Interface Architecture, is being widely implemented in Gigabit class networks on

the Microsoft Windows operating system.

All of these communication facilities have hardware device dependent code or CPU ar-

chitecture speci�c code. However, PM/Ethernet is NIC hardware independent.

5.7 Conclusions of This Chapter

This chapter has proposed software techniques to realize a high performance communication

facility using a commodity network. These techniques do not require any special hardware

or hardware speci�c device drivers in order to adapt to any kind of NIC. In these techniques,

a reliable light-weight network protocol is handled on the data link layer called by a network

device driver directly, and existing network protocols such as TCP/IP are also supported

on the same NIC. The Interrupt Reaping technique is proposed to eliminate the hardware

interrupt overhead when an application waits for a message.

PM/Ethernet, an instance of this scheme, is implemented on Linux with minimal mod-

i�cation to the Linux kernel, and existing network device drivers are used without any

modi�cation. It achieves 77.5 MB/s bandwidth and 37.6 �sec round trip time latency

75

5 Hardware Independent Designs 5.7. Conclusions of This Chapter

compared to the fact that TCP/IP achieves 46.7 MB/s bandwidth and 89.6 �sec round

trip time latency using Pentium III 500 MHz PCs on Packet Engines' G-NIC II Gigabit

Ethernet NIC. The communication latency of PM/Ethernet is about one third of that of

TCP/IP, and the communication bandwidth of PM/Ethernet is 1.6 times faster than that

of TCP/IP. Using the NAS parallel benchmark programs, MPI on PM/Ethernet was eval-

uated. The results show that MPI on PM/Ethernet achieves 1.75 times faster than MPI

on TCP/IP. Using the Interrupt Reaping technique, execution speed for applications is 6

% faster than not using the technique.

76

Chapter 6

Software Techniques Using Multiple

NICs

In this chapter, the Network Trunking technique is proposed in order to achieve high

communication bandwidth by combining multiple NICs into one big channel. Then the

communication performance of this technique is evaluated. As for similar communication

techniques, the Channel Bonding[T. 95] technique used by Beowulf was proposed, but

there are some problems with utilizing it on a cluster network for parallel computing. This

chapter points out the problems and proposes a method which solved problems found with

the Channel Bonding technique of Beowulf.

77

6 Software Techniques Using Multiple NICs 6.1. Network Trunking Design

6.1 Network Trunking Design

6.1.1 Characteristics of Ethernet Switch

Recently, many Ethernet switches have a table to memorize the Ethernet MAC address

of each host which is connected to every switch port. This table is built from the MAC

address of the source sending an Ethernet Frame arriving at each port.

When an Ethernet frame comes to an Ethernet switch, the Ethernet switch searches for

the destination MAC address of the Ethernet frame in this table. When the address is

found in the table, the Ethernet frame is sent to the registered entry of the table. When it

is not found, the Ethernet switch broadcasts the Ethernet frame to all ports of the Ethernet

switch.

By memorizing MAC addresses, the Ethernet switch increases the eÆciency of transmit-

ting Ethernet frames, eliminating redundant frame transmission.

When Ethernet frames with the same source MAC address come from multiple ports of

an Ethernet switch, the transmitting process depends on the implementation of the switch.

Some switches broadcast the Ethernet frame to all ports, some switches send to multiple

ports which are then registered in the table.

6.1.2 The Beowulf Channel Bonding Technique

The Channel Bonding[T. 95] technique of Beowulf does not maintain the Ethernet MAC

addresses of its own NICs and the destination Ethernet MAC addresses, so it is not able

to convert Ethernet frames to the appropriate destination MAC address. The Channel

Bonding technique also requires that every NIC needs to be connected to the same Ethernet

network.

The Channel Bonding technique is useful in the case where sending frames on the server

NIC become bottlenecked. However, there are the following problems:

� Load distribution is possible on the sending side, but not on the receiving side, since

communication concentrates on one speci�ed piece of NIC hardware.

� A switch may broadcast an Ethernet frame when frames with the same source MAC

78

6 Software Techniques Using Multiple NICs 6.1. Network Trunking Design

address come to the switch, as described in section 6.1.1. And there is also the case

where all the NICs interfere with the broadcast frames.

� When every NIC can connect with one switch, collective communication performance

is limited by the bisection bandwidth of the switch because every NIC needs to be

connected to the same Ethernet Network, or limited in communication performance

to the links between switches.

6.1.3 Proposing the Network Trunking Technique

The Network Trunking technique solves the problems of the Channel Bonding technique by

rebuilding the Ethernet frame using the PM/Ethernet mechanism to all of the destination

nodes. Features of the Network Trunking technique on PM/Ethernet are described as

follows:

� Requests for Ethernet switch bandwidth are reduced compared with the Channel

Bonding technique because each network can be separated using each Ethernet NIC

on a host.

� There is no annoying e�ect to the switch transfer shown above because of restructur-

ing of the Ethernet frame.

� Low communication overhead using the Go-Back N for PM protocol proposed in the

GigaE PM is used instead of the TCP/IP protocol.

The followings are the design issues of the Network Trunking technique on PM/Ethernet.

1 Implementation technique to guarantee message arrival and message ordering when

multiple NICs are used.

2 Implementation of the Interrupt Reaping technique in the Network Trunking tech-

nique.

1. Implementation technique to guarantee message arrival and message or-

dering when multiple NICs are used

79

6 Software Techniques Using Multiple NICs6.2. Network Trunking Facility Implementation

Message order is easily changed using multiple NICs. Accordingly, a guarantee of message

arrival and message ordering is required. However it had better be able to queue a mis-

ordered message as well, because a proper message may arrive at the other NICs.

So a message ordering queue is introduced to bu�er a message by mean of every con-

text of each PM. The queue is in the PM context structure that is the unit of message

administration of PM.

When a message does not arrive, it can not be judged whether the message transfer is

delayed or the message is really lost. This problem is solved by using a re-transmission

algorithm that re-transmits when an ACK message is not received by the sending side after

a �xed periods. Redundant messages are discarded on the receiver side.

2. Implementation of the Interrupt Reaping technique in the Network Trunking

technique

It is not enough to execute Interrupt Reaping processing for a single device. It must be

done for all devices.

6.2 Network Trunking Facility Implementation

The Network Trunking facility is implemented using the PM/Ethernet mechanism on the

Linux operating system. The user library and PM/Ethernet device driver were modi�ed

to accommodate PM/Ethernet.

� User library: only a part of the initialization in Network Trunking correspondence is

expanded.

� PM/Ethernet driver: the Network Trunking part is separated from the other parts,

such as the sending and receiving processes, that are not related to the Network

Trunking part to minimize the need for additional code for the Network Trunking

facility.

80

6 Software Techniques Using Multiple NICs6.2. Network Trunking Facility Implementation

PM/Ethernet User Library

PM/Ethernet
Transmission

PM/Ethernet
Reception

Dispatching Ordering

User Program

eth0
Driver

eth0
NIC

Network0

Network1

Network2

Network3

PM/Ethernet User Library

PM/Ethernet
Transmission

PM/Ethernet
Reception

Dispatching Ordering

User Program

eth0 eth1 eth2 eth3

NIC0 NIC1 NIC2 NIC3

Node 0

Node 1

PM/Ethernet
Driver

eth1
Driver

eth2
Driver

eth3
Driver

eth1
NIC

eth2
NIC

eth3
NIC

Xmit
Queue

Recv
Queue

Wait
Que Wait

Que

Figure 6.1: The Network Trunking Architecture

Figure 6.1 shows the internal con�guration of the Network Trunking facility. The Network

Trunking facility is realized using a part of the lower portion of Dispatching and Ordering

from the PM/Ethernet driver described in Figure 6.1, and these parts control multiple

Ethernet device drivers.

Dispatching: This part has a table consisting of the MAC address of every node used

by the NICs(eth0,1,2,3). After having decided on a transfer NIC according to the

message from the sending queue, the Dispatching part replaces the Ethernet header,

and calls the sending function of the Ethernet device driver.

81

6 Software Techniques Using Multiple NICs 6.3. Evaluation of Network Trunking

For communication among many nodes, the round-robin method was adopted in order

to utilize all of the NICs equally.

Ordering: Message ordering is managed by sequence number. A message is stored in the

reception queue when the sequence number matches during reception and inserted in

the internal wait queue when the sequence number does not match.

The ordering part always checks whether the sequence number matches or not during

reception of a message. When the sequence number of a message matches, the message

is moved to the receive queue from the wait queue.

When the message has already been received in the wait queue, the message is dis-

carded.

Normal device driver structure (netdevice structure) is used in controlling multiple

Ethernet device drivers in order to maintain the independence of existing Ethernet device

drivers.

The Network Trunking facility is implemented without any modi�cation to existing Eth-

ernet device drivers. So, there is no need to use the same NIC hardware.

6.3 Evaluation of Network Trunking

6.3.1 PM level Communication Performance

In this section, the PM level communication performance of the Network Trunking tech-

nique is evaluated.

Table. 6.1 shows the evaluation environment. The Digital DC21140(Tulip), Intel EEP-

RO100 and 3Com 3C905B were selected as evaluation NICs because they are currently the

most popular NICs. The device driver for all three Ethernet NICs was written by the same

developer, and the control code of each device driver is similar to that of the others, except

for the initialization of the device.

Figures 6.2, 6.3 and 6.4 show the PM level communication bandwidth achieved by chang-

ing the number of NICs for the Tulip, EEPRO100 and 3C905B.

82

6 Software Techniques Using Multiple NICs 6.3. Evaluation of Network Trunking

Table 6.1: Evaluation Environment for Network Trunking

Hardware
Pentium II 400MHz
(440BX chipset, 256MB SDRAM)
Digital DC21140(Tulip)

NIC
Intel EEPRO100
3Com 3C905B
using 32 bit PCI slot

Host OS Redhat 6.1 Linux (2.2.12 kernel)
Device Driver
for Tulip tulip.c:v0.91g-ppc 7/16/99 Donald Becker
for EEPRO100 eepro100.c:v1.08 5/3/99 Donald Becker
for 3C905B 3c59x.c:v0.99H 11/17/98 Donald Becker

Ethernet Switch Extreme Summit 2

The results showed improvement of communication bandwidth to be almost linear until

three NICs are used. This holds for all three types of NICs. The best communication

performance with four NICs was 44.5 MB/s with the Tulip (3.6 times faster than one

NIC). In addition, the performance of the 3C905B with 4 NICs was 29.8 MB/s, but this

was worse than that of 3 NICs.

Table 6.2 shows the round trip time for a 4 byte message using each NIC. The round

trip time of the Tulip increased by 1-2 �sec by increasing the number of NICs, however

the round trip time of the EEPRO100 and the 3C905B increased by 6 �sec. Because the

execution code of PM/Ethernet is the same, it is thought this is due to a problem of the

device driver or some problem on the NIC hardware side.

Table 6.2: Round Trip Time of Network Trunking (�sec)

NIC Hardware NIC � 1 NIC � 2 NIC � 3 NIC � 4

Tulip 84.5 85.6 87.6 88.9
EEPRO100 97.6 103.6 105.6 106.0
3C905B 89.8 95.8 97.9 100.4

83

6 Software Techniques Using Multiple NICs 6.4. Conclusions of This Chapter

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

4e+07

4.5e+07

5e+07

0 200 400 600 800 1000 1200 1400 1600

T
hr

ou
gh

pu
t (

B
yt

es
/s

)

Payload Length (Bytes)

PM Basic Bandwidth on Tulip

tulip x 1
tulip x 2
tulip x 3
tulip x 4

Figure 6.2: Communication Bandwidth on the Digital Tulip

6.4 Conclusions of This Chapter

This chapter proposed and evaluated the Network Trunking technique, which allows com-

munication bandwidth to improve by using multiple NICs.

The Network Trunking facility improved the communication bandwidth using up to three

NICs for all three kinds of NICs (Tulip, EEPRO100, 3C905B). The best communication

performance at four NICs was 44.5 MB/s with the Tulip (3.6 times faster than using one

NIC). The Network Trunking facility enables a great deal of bandwidth improvement when

using a method that does not depend on hardware.

84

6 Software Techniques Using Multiple NICs 6.4. Conclusions of This Chapter

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

4e+07

4.5e+07

5e+07

0 200 400 600 800 1000 1200 1400 1600

T
hr

ou
gh

pu
t (

B
yt

es
/s

)

Payload Length (Bytes)

PM Basic Bandwidth on Intel EEPRO100

eepro100 x 1
eepro100 x 2
eepro100 x 3
eepro100 x 4

Figure 6.3: Communication Bandwidth on the Intel EEPRO100

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

4e+07

4.5e+07

5e+07

0 200 400 600 800 1000 1200 1400 1600

T
hr

ou
gh

pu
t (

B
yt

es
/s

)

Payload Length (Bytes)

PM Basic Bandwidth on 3Com 3C905B

3Com x 1
3Com x 2
3Com x 3
3Com x 4

Figure 6.4: Communication Bandwidth on the 3Com 3C905B

85

Chapter 7

Comparison of Application

Performance with a Dedicated

Cluster Network

This chapter shows that the PM/Ethernet on Gigabit Ethernet is able to achieve application

performance comparable to the PM/Myrinet as a dedicated cluster network. In order

to evaluate performance involving a di�erence of networks precisely, PMv2 communication

facility was used. Application performance on Gigabit Ethernet and Fast Ethernet networks

(including Network Trunking) is also evaluated, and compared with that on Myrinet. This

evaluation is done on RWC clusters: RWC SCore Cluster I, RWC SCore Cluster II and

RWC PC Cluster II.

86

7 Comparison of Application Performance 7.1. Cluster of Clusters

7.1 Cluster of Clusters

PC clusters are already shifting to the full-scale implementation stage in addition to being

a target of study as described in chapter 2. With the spread of PC clusters, it is expected

that a cluster system network will appear and user requests for a cluster system will be

diversi�ed. In addition, as cheap symmetric-multi-processor (SMP) PCs become available,

an SMP PC cluster which uses them will attract a lot of attention.

LAN

Cluster 2

Cluster 3
Cluster 4

PC PC PC

PC PC PC

PCPC SAN

Cluster 1

PC PC PC

PC PC PC

PCPC SAN

PC PC PC

PC PC PC

PCPC SAN-1
SANSMP

PC

SMP
PC

SMP
PC

SMP
PC

Figure 7.1: Example of a Cluster of Clusters

As one example of this diversi�cation of cluster con�guration, users want to utilize more

than one cluster as part of a bigger cluster than each of the member clusters. It is e�ective

when large-scale computing performance is necessary in an environment where more than

one cluster is used. Such a cluster is called a COC (Cluster of Clusters, Figure 7.1). In a

COC, networks for these clusters may not always be the same type of network, and it is a

problem as to how these di�erent types of networks should be treated.

87

7 Comparison of Application Performance 7.2. PMv2 Design

7.2 PMv2 Design

PMv2 is a communication facility designed to support a Cluster of Clusters (COC) and an

SMP cluster, and to provide communication architecture for more than one network.

7.2.1 COC and SMP Cluster Support

Figure 7.2 shows an example of a COC consisting of a PC cluster using Gigabit Ethernet,

and an SMP PC cluster using Myrinet. Every PC is connected with Fast Ethernet.

It is valid to select the highest-speed network as the network to use for communication. In

cluster 1, Myrinet should be used for communications between nodes, and shared memory

communication should be used for the interprocess communication (Figure 7.2, Shmem).

In cluster 2, Gigabit Ethernet should be used between the nodes. And Fast Ethernet is

only available for communication between nodes in cluster 1 and cluster 2.

Cluster 1

PE
0

PE
1

Shmem

SMP PC

PE
2

PE
3

Shmem

SMP PC

PE
4

PE
5

Shmem

SMP PC

PE
6

PE
7

Shmem

SMP PC

Myrinet

PE
8

PC

PE
10

PC

PE
12

PC

PE
14

PC

PE
9

PC

PE
11

PC

PE
13

PC

PE
15

PC

Gigabit Ethernet

Cluster 2

Fast Ethernet

Figure 7.2: Example of a Cluster of Clusters

In communication of COC, it is natural that interprocess communication between PEs

on an SMP PC is considered as a kind of network communication as shown in Figure 7.2.

Therefore, it is good to provide a framework to consider shared communication between

PEs on the SMP PC as a kind of communication.

88

7 Comparison of Application Performance 7.2. PMv2 Design

To provide this framework, a mechanism called PM/Composite has been proposed[HTT+99].

In PM/Composite, each node has a destination PM device table that stores what network

should be used for each destination node, and when a message sending request to a n-

ode is posted to PM/Composite, the PM/Composite gets the destination network from the

destination PM device table for the node and sends the message to the network.

For example, Table 7.1 shows a destination PM device table located in PE0 of Figure

7.2. In addition to the above, to make a binary program work in a di�erent network

environment, the PM device table for the appropriate network should be made available

at the start of the program.

Table 7.1: An Example of a Destination PM Device Table on PM/Composite

PE
Device

PE
Device

PE
Device

PE
Device

No. No. No. No.
0 - 1 SH 2 MY 3 MY
4 MY 5 MY 6 MY 7 MY
8 FE 9 FE 10 FE 11 FE
12 FE 13 FE 14 FE 15 FE

SH=Shmem, MY=Myrinet, FE=Fast Ethernet

7.2.2 Communication Architecture for Multiple Networks

An example of a typical communication architecture that supports multiple networks is

the protocol stack of a UNIX based OS (Figure 7.3). A protocol stack controls the com-

munication protocol between the device driver which controls the hardware and the user

program.

An advantage of the protocol stack of the UNIX based OS is to provide independence

between multiple devices and multiple protocols by prescribing an interface between the

devices and the protocols. This feature increases the applicability to other protocols.

Using the protocol stack of the UNIX based OS, implementation of a communication

protocol to enable reliable communication on Ethernet, Myrinet and shared memory is

discussed.

89

7 Comparison of Application Performance 7.2. PMv2 Design

Socket

TCP UDP

IP

Other
Protocols

Ethernet FDDI ATM Other
Devices

MPIOther Protocols
(eg. CORBA, GIOP)

PM2

Figure 7.3: Protocol Stacks on the UNIX Operating System

Table 7.2 summarizes the requirements needed for protocol processing to ensure com-

munication with reliability in each network. Because Ethernet does not guarantee message

transfer at the hardware level, a message may be lost. Accordingly, protocol processing

that guarantees message arrival, message ordering, and
ow control of the bu�er must be

implemented to ensure reliable communication on Ethernet. However, because Myrinet

and interprocess communication using shared memory both guarantee message transfer at

the hardware level, there is no need of protocol processing to guarantee message arrival

and message ordering. It is enough to process the
ow control of the bu�er.

Table 7.2: Protocol Processing Requirements on Each Network

Network
Guarantee of Message arrival Flow Control

and Message Ordering of Bu�er
Shared Memory - Required
Myrinet - Required
Ethernet Required Required

In meeting the requirements shown in Table 7.2 using a framework based on the protocol

stack of the UNIX based OS on Myrinet and shared memory, a communication protocol

90

7 Comparison of Application Performance 7.2. PMv2 Design

that guarantees message arrival and message ordering is also processed on both Myrinet

and shared memory. This approach increases the protocol processing overhead. So, it is

not possible to take advantage of hardware performance when using the protocol stack of

the UNIX based OS.

Because it is important in a communication facility for a cluster to maximize the perfor-

mance of the network hardware, a framework involving the protocol stack on the existing

OS cannot be used. A method that is most suitable for each network is chosen.

7.2.3 Support of Hardware Speci�c Communication

In high performance communication for a cluster, it is important to maximize network hard-

ware performance. Accordingly, a communication method which depends on specialized

hardware should be introduced if conspicuous improvement in communication performance

is expected.

However, if application program interfaces (APIs) are hardware speci�c, the method

may not be implemented for every type of network hardware. This limits the portability

of applications when APIs have to be made individually for every communication method.

PMv2 adopts APIs as options in order to introduce communication methods that make

use of specialized hardware possible. A program judges whether these APIs can be used on

the program or not by the attributes of a device. If the attributes include the
ags of the

APIs, then it can be used. To improve the portability of an application, the addition of

APIs for optional operations should be minimized and the APIs should be as widely usable

as possible.

7.2.4 PMv2 APIs

Table 7.3 shows the essential APIs of PMv2. The APIs of PMv2 consist of those for

PM device operations, PM context processing operations, PM message communication

operations and PM remote memory operations. In these operations, every PM device

must implement APIs for PM device operations, PM context processing and PM message

communication.

For details about the APIs on PMv2, refer to the PM Application Programmers' Interface

91

7 Comparison of Application Performance 7.2. PMv2 Design

Manual[PMA].

Table 7.3: APIs on PMv2

PM Device Operations
Description

(Required)
pmOpenDevice() Open a PM device
pmCloseDevice() Close the PM device
pmGetOptionBit() Get the options of the PM device

PM Context Operation
Description

(Required)
pmOpenContext() Open a PM context
pmCloseContext() Close the PM context
pmAssociateNodes() Register nodes to the PM context

PM Message Operation
Description

(Required)
pmGetSendBu�er() Get a PM send bu�er
pmSend() Send a message
pmReceive() Receive a message
pmReleaseReceiveBu�er() Release a receive bu�er

PM Remote Memory Operation
Description

(Optional)
pmMLock() Pin-down user memory
pmMUnlock() Release pinned-down user memory
pmWrite() Process remote memory write
pmIsWriteDone() Check completion of remote memory write
pmRead() Process remote memory read
pmIsReadDone() Check completion of remote memory read

PM device operation and PM context operation APIs: (Required)

These APIs process opening and closing of PM device and PM context, and initial-

ization and building of a communication environment for the PMv2 communication

facility.

PM message communication APIs: (Required)

These APIs process polling-based message communication.

PM remote memory operation APIs: (Optional)

These APIs process pin-down operations of user memory and remote memory access

92

7 Comparison of Application Performance 7.3. PMv2 Implementation

operations. Direct Memory Copy techniques [TOT+99] and Zero-Copy techniques[TOHI98]

are hardware speci�c communication on PMv2. These techniques use APIs of remote

memory operations to be as general purpose as possible.

7.2.5 Implementation Techniques for PM Devices

Implementation techniques depend on the characteristics of each network. For example,

the following cases are considered:

� Processing of the PM protocol and the device control can be handled in the NIC

CPU when the NIC has its own programmable CPU.

� When there is an existing device driver, the PM protocol can be handled on top of

the driver.

7.3 PMv2 Implementation

7.3.1 Overview of the PMv2 Implementation

PMv2 was implemented on Linux. Figure 7.4 shows the PMv2 architecture. PMv2 consists

of PM/Myrinet, PM/Ethernet, PM/Shmem and PM/Composite as PM devices in addition

to a PMv2 library which controls the whole PMv2 library (Figure 7.4, PMv2 Lib).

As described in section 7.2.2, PMv2 adopts the communication protocol implementation

method to maximize the performance of the hardware with Myrinet, Ethernet and shared

memory, using a simple communication protocol for the cluster system.

A brief description of the implementation of each PM device is given below:

PM/Myrinet: a communication facility on Myrinet [THI96, THIS97, TOHI98] which is

a high-speed network with a bandwidth of 160MB/s (Section 3.2.1).

PM/Ethernet: a communication facility using existing Ethernet device drivers with-

out any modi�cation to the existing Ethernet device driver (Chapter 5) [SHT+99a]

[SHT+00a].

93

7 Comparison of Application Performance 7.3. PMv2 Implementation

PM2
Lib

PM/Shmem
Library

PM/Myrinet
Library

PM/Ethernet
Library

Linux Kernel

PM/Shmem
driver

PM/Myrinet
 driver

PM/Ethernet
 driver

Ethernet driver

Ethernet NIC
Myrinet NIC

PM/Composite
Library

User Process

PM/Myrinet
Firmware

Figure 7.4: PMv2 Architecture

PM/Shmem: a communication facility designed to consider interprocess communication

through the shared memory as a PM communication. PM/Shmem is based on the

functionality of MPICH-PM/CLUMP[TOT+99].

� Shared memory is allocated as PM context and the PM/Shmem library com-

municates through this shared memory.

� The PM Communication protocol is processed in the PM/Shmem library. Pro-

tocol processing is a simple ring bu�er process.

� The Direct Memory Copy technique is realized in the PM/Shmem device driver.

PM/Composite: this PM device switches the PM device for every partner node.

� APIs for switching networks to every node are added and realized in the

PM/Composite library.

� PM/Composite includes an exclusive control mechanism for SMP and the des-

tination PM device table of partner point nodes.

� On a message transmission, the message is transmitted using the PM device

corresponding to the sender node in the PM device destination table. And, in

message reception, PM/Composite polls every PM device registered in the PM

94

7 Comparison of Application Performance 7.3. PMv2 Implementation

device destination table.

� The overhead of PM/Composite includes the exclusive control for the SMP, the

accessing cost of the table of the PM device information of the partner device,

and cost of indirect function calling.

Among the APIs described in section 7.2.4, the PM device operation is implemented in

the PMv2 library. Network dependent PM device operations, the PM context operations,

and the PM message communication operations are implemented in each PM device in-

dependently. The PM remote memory operations are implemented in PM/Myrinet and

PM/Shmem.

A pointer to a function corresponding to the APIs is stored in the PM device speci�c

context structure, and APIs for each PM device are executed by an indirect function call.

PMv2 can be developed on hardware which has a programmable CPU on the NIC or

which can control a hardware device using a device driver in the kernel.

7.3.2 SCore Version 3 and MPICH/SCore on PMv2

SCore Version 3[HTT+99](SCore3) is cluster system software on PMv2. Figure 7.5 shows

the architecture of the SCore3 cluster system software. In the execution environment of

SCore3, a user speci�es a network, the con�guration of the network, and the number of

nodes with a command option.

The SCore3 runtime environment makes a PM/Composite device and executes the pro-

gram using the PM/Composite device. In the case of an SMP cluster, the SCore3 runtime

environment makes multiple processes on one node, and makes a PM/Composite device for

each process. This means that multiple processes share one PM device.

MPICH/SCore is an MPI library in SCore3, based on MPICH-1.1.2[MPIb], and is im-

plemented using the Channel interface of the MPICH.

95

7 Comparison of Application Performance 7.4. Evaluation on RWC SCore Cluster I

PM/Myrinet
 Firmware

Myrinet NIC

Linux Kernel

Ethernet NIC

PMv2 Driver

PMv2

SCore3 Global Operating System

SCASH MPC++ MPICH/SCore

User application

Figure 7.5: SCore3 Architecture

7.4 Performance Evaluation on RWC SCore Cluster

I

The following sections (sections 7.4, 7.5 and 7.6) compare the application performance on

PM/Ethernet with that on PM/Myrinet.

In the following evaluation, basic communication performance and the NAS parallel

benchmarks are measured (Appendix C). TCP/IP is also used as a comparison target for

PM/Ethernet and PM/Myrinet. The same binary programs are used as benchmarks,

changing the network with the command option at runtime.

The performance with a 16 node SMP Pentium III cluster in a part of SCore Cluster

I were measured. The measurement environment is shown in Table 7.4. The network

switch shown in Table 7.4 is used in every measurement. In this evaluation, a 32 bit 33

MHz PCI version of Myrinet was used. In PM/Ethernet and TCP/IP, the benchmark pro-

grams on Gigabit Ethernet and Fast Ethernet (100BaseT) are measured. In the following

measurements, PMv2 message communication is used.

96

7 Comparison of Application Performance 7.4. Evaluation on RWC SCore Cluster I

Table 7.4: Measurement Environments on RWC SCore Cluster I
.

DUAL Pentium III 500MHz
Node PC (440BX chipset, 512MB SDRAM

32 bit 33MHz PCI bus)

Ethernet NIC
Packet Engines G-NIC II(Gigabit Ethernet)
Intel EEPRO/100(100BaseT)

Ethernet Switch
3Com SuperStackII 9300(Gigabit Ethernet)
3Com SuperStackII 3900(100BaseT)

Myrinet
Myricom M2M-PCI32 (32 bit PCI)
33 MHz LANai4 processor with 1 MB memory

Myrinet Switch Myricom M2M-OCT-SW8
Host OS Redhat 6.1 Linux (2.2.12 kernel)
G-NIC II hamachi.c:v0.11 8/21/99
Device Driver Written by Donald Becker
EEPRO/100 eepro100.c:v1.09j-t 9/29/99
Device Driver Written by Donald Becker

7.4.1 Basic Communication Performance on PM/Myrinet, P-
M/Ethernet

In this section, the PM level bandwidth and round trip time are compared with TCP/IP

as a measure of basic communication performance. The communication performance of

TCP/IP using Netperf-2.1pl3 [NET] was measured with the NODELAY option.

Bandwidth performance was calculated from the time to transmit messages 100,000 times

consecutively, and round trip time is an average value calculated from the time it took to

execute 100,000 times using a ping-pong program. On every measurement, Ethernet and

Myrinet switches were used.

Figure 7.6 shows the communication bandwidth performance of PM/Ethernet and TCP/IP

on 100BaseT. The maximum bandwidth performance of PM/Ethernet is 11.9MB/s, that

of TCP/IP is 11.1MB/s, and these are almost equal to the entire 100BaseT physical band-

width. The TCP/IP bandwidth performance is higher than that of PM/Ethernet in the

case where message length is equal to or less than 256 bytes, because TCP/IP transmits

more than one message in one TCP/IP packet[SHT+99a],

Figure 7.7 shows PM/Myrinet and PM/Ethernet on Gigabit Ethernet, and communica-

97

7 Comparison of Application Performance 7.4. Evaluation on RWC SCore Cluster I

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

1 8 64 512 4096

T
hr

ou
gh

pu
t (

B
yt

es
/s

)

Payload Length (Bytes)

TCP/IP on 100BaseT
PM/Ethernet on 100BaseT

Figure 7.6: Communication Bandwidth on PMv2 (100BaseT)

tion bandwidth performance of TCP/IP on Gigabit Ethernet. The maximum bandwidth

performance of PM/Ethernet was 78.4MB/s, TCP/IP was 38.8MB/s and PM/Myrinet was

116.1MB/s.

The bandwidth performance of PM/Ethernet is 2.0 times higher than that of TCP/IP.

The TCP/IP bandwidth performance is higher than that of PM/Ethernet in the case where

message length is equal to or less than 256 bytes, because TCP/IP transmits more than

one message in one TCP/IP packet[SHT+99a].

Figure 7.8 shows the communication round trip time of PM/Ethernet and TCP/IP on

100BaseT, Gigabit Ethernet, and PM/Myrinet. In addition, Table 7.5 shows the communi-

cation round trip time of a four byte message on PM/Ethernet, PM/Myrinet and TCP/IP.

The round trip time of PM/Ethernet on 100BaseT was 7.2 % faster than that of TCP/IP

on Gigabit Ethernet.

98

7 Comparison of Application Performance 7.4. Evaluation on RWC SCore Cluster I

0

2e+07

4e+07

6e+07

8e+07

1e+08

1.2e+08

1 8 64 512 4096

T
hr

ou
gh

pu
t (

B
yt

es
/s

)

Payload Length (Bytes)

TCP/IP on GigaEther
PM/Ethernet on GigaEther

PM/Myrinet

Figure 7.7: Communication Bandwidth on PMv2 (Gigabit Ethernet, Myrinet)

Table 7.5: Communication Round Trip Time on PMv2

Network RTT

PM/Myrinet 16.4 �s
PM/Ethernet(Gigabit Ethernet) 69.4 �s
TCP/IP(Gigabit Ethernet) 125.0 �s
PM/Ethernet(100BaseT) 115.2 �s
TCP/IP(100BaseT) 178.4 �s

7.4.2 PM/Shmem Round Trip Time and PM/Composite Over-
head

This section describes PM/Shmem round trip time and PM/Composite overhead. The

overhead of PM/Composite is the same even if a PM device is used, so the PM/Composite

overhead using a PM/Shmem device, which is the fastest PM device, is measured.

99

7 Comparison of Application Performance 7.4. Evaluation on RWC SCore Cluster I

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

1 8 64 512 4096

R
ou

nd
 T

rip
 T

im
e

(s
ec

)

Payload Length (Bytes)

TCP/IP on 100BaseT
PM/Ethernet on 100BaseT

TCP/IP on GigaEther
PM/Ethernet on GigaEther

PM/Myrinet

Figure 7.8: Communication Round Trip Time on PMv2

Table 7.6 shows the PM level round trip time (RTT) using PM/Shmem with and without

PM/Composite. The round trip time of PM/Shmem without PM/Composite was 2.75 �s,

and that with PM/Composite increased by 0.1 �s. Therefore the one way overhead of

PM/Composite was 0.05 �s(3.6%). This result shows that the overhead of PM/Composite

is not crucial even on PM/Shmem.

Table 7.6: Communication Round Trip Time on PM/Shmem

RTT
Without With

Composite Composite
PM/Shmem 2.75 �s 2.85 �s

100

7 Comparison of Application Performance 7.4. Evaluation on RWC SCore Cluster I

7.4.3 Basic MPI Communication Performance on PM/Myrinet,
PM/Ethernet

In this section, the MPI level bandwidth and round trip time are compared with that of

TCP/IP. MPICH/SCore for PMv2 and MPI/LAM[LAM] for TCP/IP are used.

Figure 7.9 shows the MPI communication bandwidth performance of PM/Ethernet and

TCP/IP on 100BaseT. The maximum bandwidth performance of PM/Ethernet was 11.7M-

B/s, that of TCP/IP was 11.MB/s. There was performance degradation of PM/Ethernet in

the case where message length is between 768 Bytes and 2048 Bytes, since a method of mes-

sage transfer was changed from Short-Message-Transfer to Eager-Protocol-Transfer when

the message size was longer then 1024 in MPICH/SCore. The Short-Message-Transfer in-

cludes control data and transmit data in one message, however the Eager-Protocol-Transfer

requires a control message and data messages.

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1 8 64 512 4096 32768 262144

T
hr

ou
gh

pu
t (

B
yt

es
/s

)

Payload Length (Bytes)

TCP/IP(MPI/LAM) on 100BaseT
PM/Ethernet(MPICH/SCore) on 100BaseT

Figure 7.9: MPI Communication Bandwidth on PMv2 (100BaseT)

101

7 Comparison of Application Performance 7.4. Evaluation on RWC SCore Cluster I

Figure 7.10 shows the MPI communication bandwidth performance of PM/Ethernet and

TCP/IP on Gigabit Ethernet. The maximum bandwidth performance of PM/Myrinet was

67.5, PM/Ethernet was 49.0MB/s, TCP/IP was 36.MB/s. The result of PM/Ethernet is

27 % faster than that of TCP/IP.

0

1e+07

2e+07

3e+07

4e+07

5e+07

6e+07

7e+07

8e+07

1 8 64 512 4096 32768 262144

T
hr

ou
gh

pu
t (

B
yt

es
/s

)

Payload Length (Bytes)

TCP/IP(MPI/LAM) on GigaEther
PM/Ethernet(MPICH/SCore) on GigaEther

PM/Myrinet(MPICH/SCore)

Figure 7.10: MPI Communication Bandwidth on PMv2 (Gigabit Ethernet, Myrinet)

Figure 7.11 shows the MPI communication round trip time of PM/Ethernet and TCP/IP

on 100BaseT, Gigabit Ethernet, and PM/Myrinet. In addition, Table 7.7 shows the MPI

communication round trip time of a four byte message on PM/Ethernet, PM/Myrinet and

TCP/IP. The round trip time of PM/Ethernet on 100BaseT was 24.7 �s faster than that

of TCP/IP on Gigabit Ethernet.

7.4.4 NAS Parallel Benchmark Results

For comparison of true application performance, the NAS parallel benchmarks (Appendix

C), version 2.3 class A, were used. The IS (integer sort), CG (Conjugate Gradient), LU

102

7 Comparison of Application Performance 7.4. Evaluation on RWC SCore Cluster I

Table 7.7: MPI Communication Round Trip Time

Network RTT

PM/Myrinet (MPICH/SCore) 26.2 �s
PM/Ethernet (MPICH/SCore,Gigabit Ethernet) 90.1 �s
TCP/IP (MPI/LAM,Gigabit Ethernet) 169.1 �s
PM/Ethernet (MPICH/SCore,100BaseT) 144.4 �s
TCP/IP (MPI/LAM,100BaseT) 217.2 �s

1e-05

0.0001

0.001

0.01

0.1

1

1 8 64 512 4096 32768 262144

R
ou

nd
 T

rip
 T

im
e

(s
ec

)

Payload Length (Bytes)

TCP/IP(MPI/LAM) on 100BaseT
PM/Ethernet(MPICH/SCore) on 100BaseT

TCP/IP(MPI/LAM) on GigaEther
PM/Ethernet(MPICH/SCore) on GigaEther

PM/Myrinet(MPICH/SCore)

Figure 7.11: MPI Communication Round Trip Time on PMv2

(LU Decomposition) and BT(Block Tridiagonal Solver) in the NAS parallel benchmarks

are shown in Figures 7.12, 7.13, 7.14, and 7.15 respectively. All of the NAS parallel bench-

marks are shown in Appendix D. In the legend of these �gures, GigaEther means Gigabit

Ethernet. MPI/LAM[LAM] for TCP/IP is used for as a communication facility which does

not use any high-performance communication techniques.

Applications which are Sensitive to Communication Performance:

103

7 Comparison of Application Performance 7.4. Evaluation on RWC SCore Cluster I

0

10

20

30

40

50

60

2 4 6 8 10 12 14 16 18

T
ot

al
 M

op
s

Number of PE

TCP/IP(MPI/LAM) on 100BaseT
PM/Ethernet(MPICH/SCore) on 100BaseT

TCP/IP(MPI/LAM) on GigaEther
PM/Ethernet(MPICH/SCore) on GigaEther

PM/Myrinet(MPICH/SCore)

Figure 7.12: An Application which is Sensitive to Communication Performance:
IS CLASS A

From the results shown in Figure 7.12, PM/Ethernet is 2.1 times faster, and PM/Myrinet

is 2.5 times faster, compared with the performance of TCP/IP. As discussed in section 4.5.1,

the dominant message size of IS Class A on 16 PE is in 64{256KB[TSH+00]. From the

results shown in Figure. 7.10 and 7.11, MPI bandwidth of PM/Ethernet is about 2.5 times

higher than that of TCP/IP. MPI RTT of PM/Ethernet is about half of that of TCP/IP

around the message size, and MPI bandwidth of PM/Myrinet is about 3.0 times faster than

that of TCP/IP and MPI RTT of PM/Myrinet is about one thirds of that of TCP/IP, so,

the result of IS is related to the results of MPI communication bandwidth and latency.

These results show that IS performance on Gigabit Ethernet is comparable in perfor-

mance to that of Myrinet on SCore Cluster I, and about 2 times faster than TCP/IP as a

communication without any high-performance techniques.

As for the results of CG shown in Figure 7.13, the performance of PM/Ethernet is better

than TCP/IP on Gigabit Ethernet, but, on 100BaseT, the performance on PM/Ethernet

is almost the same as TCP/IP because of a lack of bandwidth.

104

7 Comparison of Application Performance 7.4. Evaluation on RWC SCore Cluster I

0

50

100

150

200

250

300

350

400

2 4 6 8 10 12 14 16 18

T
ot

al
 M

op
s

Number of PE

TCP/IP(MPI/LAM) on 100BaseT
PM/Ethernet(MPICH/SCore) on 100BaseT

TCP/IP(MPI/LAM) on GigaEther
PM/Ethernet(MPICH/SCore) on GigaEther

PM/Myrinet(MPICH/SCore)

Figure 7.13: An Application which is Sensitive to Communication Performance:
CG CLASS A

Applications which are not Sensitive to Communication Performance:

From the results shown in Figures 7.14 and 7.15, there is little performance di�erence,

except for that of TCP/IP on 100BaseT, between the results of LU and BT on all networks.

7.4.5 Application Performance on an SMP Cluster

In this section, the application performance of an SMP cluster is evaluated. The case where

two benchmark program processes are executed on one node is measured and compared to

the case where one benchmark program process is executed on one node. The results of

the IS and LU benchmarks are shown in Figure 7.16 and Figure 7.17.

These �gures show the results of executing a benchmark program with two processes on

one node. For example, 32 PEs of SMP is a result with 16 nodes � two processes.

From the results shown in Figure 7.16, a performance improvement is not achieved using

PM/Ethernet on 100BaseT, a performance degradation of 33 % is found in PM/Ethernet

on Gigabit Ethernet, and degradation of 29 % in PM/Myrinet on 16 PEs. This is because

105

7 Comparison of Application Performance 7.4. Evaluation on RWC SCore Cluster I

0

200

400

600

800

1000

1200

1400

1600

2 4 6 8 10 12 14 16 18

T
ot

al
 M

op
s

Number of PE

TCP/IP(MPI/LAM) on 100BaseT
PM/Ethernet(MPICH/SCore) on 100BaseT

TCP/IP(MPI/LAM) on GigaEther
PM/Ethernet(MPICH/SCore) on GigaEther

PM/Myrinet(MPICH/SCore)

Figure 7.14: An Application which is not Sensitive to Communication Performance:
LU CLASS A

of the increase of delay due to the sharing of one network by more than one process.

In contrast to the results for IS, the results for LU in Figure 7.17 are a bit more attractive,

a performance degradation was only 10 % on 100BaseT, 9 % on Gigabit Ethernet and 7 %

on Myrinet with 16 PEs.

7.4.6 Summary of Results on SCore Cluster I

� Application performance on Gigabit Ethernet is comparable in performance to that

of Myrinet on a 16 node cluster.

106

7 Comparison of Application Performance 7.4. Evaluation on RWC SCore Cluster I

0

200

400

600

800

1000

1200

2 4 6 8 10 12 14 16 18

T
ot

al
 M

op
s

Number of PE

TCP/IP(MPI/LAM) on 100BaseT
PM/Ethernet(MPICH/SCore) on 100BaseT

TCP/IP(MPI/LAM) on GigaEther
PM/Ethernet(MPICH/SCore) on GigaEther

PM/Myrinet(MPICH/SCore)

Figure 7.15: An Application which is not Sensitive to Communication Performance:
BT CLASS A

0

20

40

60

80

100

5 10 15 20 25 30

T
ot

al
 M

op
s

Number of PE

PM/Ethernet(MPICH/SCore) on 100BaseT
PM/Ethernet(MPICH/SCore) on GigaEther

PM/Myrinet(MPICH/SCore)
PM/Ethernet(MPICH/SCore) SMP on 100BaseT
PM/Ethernet(MPICH/SCore) SMP on GigaEther

PM/Myrinet(MPICH/SCore) SMP

Figure 7.16: An Application which is Sensitive to Communication Performance:
IS CLASS A on SMP

107

7 Comparison of Application Performance 7.4. Evaluation on RWC SCore Cluster I

0

500

1000

1500

2000

2500

3000

3500

5 10 15 20 25 30

T
ot

al
 M

op
s

Number of PE

PM/Ethernet(MPICH/SCore) on 100BaseT
PM/Ethernet(MPICH/SCore) on GigaEther

PM/Myrinet(MPICH/SCore)
PM/Ethernet(MPICH/SCore) SMP on 100BaseT
PM/Ethernet(MPICH/SCore) SMP on GigaEther

PM/Myrinet(MPICH/SCore) SMP

Figure 7.17: An Application which is not Sensitive to Communication Performance:
LU CLASS A on SMP

108

7 Comparison of Application Performance 7.5. Evaluation on RWC SCore Cluster II

7.5 Performance Evaluation on RWC SCore Cluster

II

This section compares application performance of PM/Ethernet using the Network Trunk-

ing technique to that of PM/Myrinet on SCore Cluster II. The measurement environment

is shown in Table 7.8.

Table 7.8: Measurement Environment on RWC SCore Cluster II

DUAL Pentium III 800MHz
Node PC (Serverworks ServerSet III LE chipset, 512MB SDRAM

64 bit 33 MHz PCI bus)

Ethernet NIC
Syskonnect SK9843 (64bit PCI,Gigabit Ethernet)
3 x Intel EEPRO/100(100BaseT)

Ethernet Switch
Summit 7i(Gigabit Ethernet)
NEC N468G-N01(100BaseT)

Myrinet
Myricom M2M-PCI64-2 (64 bit PCI)
66 MHz LANai7 processor with 1 MB memory

Myrinet Switch Myricom M2M-OCT-SW8
OS Redhat 6.2 Linux (2.2.16 kernel)
SK9843 sk98lin:v1.1.1.1 Date: 2000/06/19 06:44:18
Device Driver Written by Syskonnect
EEPRO/100 eepro100.c:v1.09j-t 9/29/99
Device Driver Written by Donald Becker

The Syskonnect Gigabit Ethernet NIC and Myrinet NIC are connected by a 64 bit 33

MHz PCI bus, and three EEPRO100 NICs are connected by a 32 bit 33 MHz PCI bus.

7.5.1 Basic PM Communication Performance

The bandwidth and round trip time on PM/Myrinet, PM/Ethernet on Gigabit Ethernet,

and PM/Ethernet using the Network Trunking technique are compared in this section.

Figure 7.18 shows the results of the PM level round trip time on RWC SCore Cluster I.

From the results shown in Figure 7.18, the round trip time of PM/Myrinet is 13.3 �s and

that of PM/Ethernet on Gigabit Ethernet is 43.3 �s. The results of PM/Ethernet with the

Network Trunking technique are not greatly di�erent due to the di�erence of the number

of NICs involved.

109

7 Comparison of Application Performance 7.5. Evaluation on RWC SCore Cluster II

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

1 8 64 512 4096

R
ou

nd
 T

rip
 T

im
e

(s
ec

)

Payload Length (Bytes)

PM/Ethernet (EEPRO100 x 1)
PM/Ethernet (EEPRO100 x 2)
PM/Ethernet (EEPRO100 x 3)

PM/Ethernet (Syskonnect)
PM/Myrinet

Figure 7.18: Communication Round Trip Time on SCore Cluster II

Figure 7.19 shows the results of the PM level bandwidth on RWC SCore Cluster I. From

the results shown in Figure 7.19, PM/Myrinet achieves 146.5 MB/s bandwidth with a 8192

byte message, and PM/Ethernet on Gigabit Ethernet achieves 103.4 MB/s with a 1468

byte message because Syskonnect and Myrinet NICs are connected on a 64 bit PCI bus in

addition to other improvements in their hardware.

PM/Ethernet on 100BaseT with the Network Trunking technique also achieves good

scalability, until three NICs are used.

7.5.2 Application Performance on RWC SCore Cluster II

Figure 7.20 shows the results of NAS parallel benchmarks (Appendix C), class B, on 16

nodes.

From the results shown in Figure 7.20, the results of the BT, LU and SP benchmarks

do not greatly di�er due to the di�erence of network. This shows that the communica-

110

7 Comparison of Application Performance 7.5. Evaluation on RWC SCore Cluster II

0

2e+07

4e+07

6e+07

8e+07

1e+08

1.2e+08

1.4e+08

1 8 64 512 4096

T
hr

ou
gh

pu
t (

B
yt

es
/s

)

Payload Length (Bytes)

PM/Ethernet (EEPRO100 x 1)
PM/Ethernet (EEPRO100 x 2)
PM/Ethernet (EEPRO100 x 3)

PM/Ethernet (Syskonnect)
PM/Myrinet

Figure 7.19: Communication Bandwidth on SCore Cluster II

tion performance needed in BT, LU and SP benchmarks are enough to that of 100BaseT

Ethernet on a 16 node cluster.

In contrast to these results, the results of the CG, FT and IS benchmarks are sensitive to

the di�erence of network. PM/Ethernet with the Network Trunking technique on FT and

IS achieved dramatic results, however the results on CG did not increase as dramatically.

This is because CG requires high communication bandwidth for neighbor communication,

and the results re
ect this. FT and IS use \all-to-all" communication frequently, which

transfers many messages to the other nodes, so, in the case of one 100BaseT network, many

re-transmission occurred and decreased the performance.

7.5.3 Summary of Results on SCore Cluster II

� Application performance on Gigabit Ethernet is comparable in performance to that

of Myrinet on a 16 node cluster.

111

7 Comparison of Application Performance 7.5. Evaluation on RWC SCore Cluster II

Figure 7.20: NAS Parallel Benchmarks, Class B, 16 nodes, on SCore Cluster II

� The Network Trunking technique increases performance on all benchmark programs,

the performance improvement of IS and FT is especially remarkable.

112

7 Comparison of Application Performance 7.6. Evaluation on RWC PC Cluster II

7.6 Performance Evaluation on RWC PC Cluster II

This section evaluates the scalability of NAS parallel benchmarks (Appendix C) of P-

M/Ethernet on Fast Ethernet (100BaseT) to PM/Myrinet on RWC PC Cluster II (128

node cluster). The measurement environment is shown in Table 7.9. All of the NAS

parallel benchmarks are shown in Appendix E.

Table 7.9: Measurement Environment on RWC PC Cluster II

Pentium PRO 200MHz
Node PC (440FX chipset, 256MB EDO-DRAM

32 bit 33MHz PCI bus)
Ethernet NIC Digital 21140A (100BaseT)
Ethernet Switch 4 x 3Com SuperStackII 3900(100BaseT)

Myrinet
Myricom M2M-PCI32
33 MHz LANai4 processor with 1 MB memory

Myrinet Switch Myricom M2M-OCT-SW8
Host OS Redhat 6.1 Linux (2.2.16 kernel)
21140A tulip.c:v0.91g-ppc 7/16/99
Device Driver Written by Donald Becker

Applications which are not Sensitive to Communication Performance:

Figure 7.21 shows the EP Class B results. As shown in given by Figure 7.21, the perfor-

mance of EP does not almost depend on the network, because it does not use the network

except for start and �nish synchronization.

Figure 7.22 shows the BT Class B results. As shown in given by Figure 7.22, BT on

Myrinet, PM/Ethernet and TCP/IP, achieve good performance scalability even on a 128

node cluster.

Figure 7.23 shows the NPB LU Class B results. From Figure 7.23, LU on Myrinet,

PM/Ethernet and TCP/IP achieve good performance scalability even on a 128 node cluster.

However the performance di�erence between 100BaseT and Myrinet becomes bigger from

32-33 PEs.

Applications which are Sensitive to Communication Performance:

Figure 7.24 shows the NPB CG Class B results. From Figure 7.24, the performance of

113

7 Comparison of Application Performance 7.6. Evaluation on RWC PC Cluster II

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120

T
ot

al
 M

op
s

Number of PE

NPB2.3 EP Class B Results on PCC2

PM/Myrinet
PM/Ethernet on 100BaseT

TCP/IP on 100BaseT

Figure 7.21: An Application which does not Sensitive to Communication Performance:
EP CLASS B

CG on Myrinet is about 2 times faster than that of PM/Ethernet and TCP/IP on 128

PEs, because of the lack of communication bandwidth.

Figure 7.25 shows the NPB IS Class B results. From Figure 7.25, the performance of

IS on Myrinet is about 2 times faster than that of PM/Ethernet. The IS performance on

TCP/IP on 128 PEs is worse than that on 16 PEs.

7.6.1 Summary of Results on PC Cluster II

� The performance of IS on Myrinet is about 2 times faster than that of PM/Ethernet.

114

7 Comparison of Application Performance 7.6. Evaluation on RWC PC Cluster II

0

500

1000

1500

2000

2500

3000

3500

0 20 40 60 80 100 120

T
ot

al
 M

op
s

Number of PE

NPB2.3 BT Class B Results on PCC2

PM/Myrinet
PM/Ethernet on 100BaseT

TCP/IP on 100BaseT

Figure 7.22: An Application which is not Sensitive to Communication Performance:
BT CLASS B

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 20 40 60 80 100 120

T
ot

al
 M

op
s

Number of PE

NPB2.3 LU Class B Results on PCC2

PM/Myrinet
PM/Ethernet on 100BaseT

TCP/IP on 100BaseT

Figure 7.23: An Application which is not Sensitive to Communication Performance:
LU CLASS B

115

7 Comparison of Application Performance 7.6. Evaluation on RWC PC Cluster II

0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100 120

T
ot

al
 M

op
s

Number of PE

NPB2.3 CG Class B Results on PCC2

PM/Myrinet
PM/Ethernet on 100BaseT

TCP/IP on 100BaseT

Figure 7.24: An Application which is Sensitive to Communication Bandwidth:
CG CLASS B

0

20

40

60

80

100

120

0 20 40 60 80 100 120

T
ot

al
 M

op
s

Number of PE

NPB2.3 IS Class B Results on PCC2

PM/Myrinet
PM/Ethernet on 100BaseT

TCP/IP on 100BaseT

Figure 7.25: An Application which is Sensitive to Communication Latency: IS CLASS B

116

7 Comparison of Application Performance 7.7. Conclusions of This Chapter

7.7 Conclusions of This Chapter

This chapter compares application performance of PM/Ethernet using the Network Trunk-

ing technique to PM/Myrinet on RWC clusters. In order to compare more precisely, a high

performance communication facility, PMv2, has been designed and implemented.

A di�erence in application performance is evaluated using the NAS parallel benchmarks

on RWC SCore Cluster I, RWC SCore Cluster II and RWC PC Cluster II, and found that:

� Application performance on Gigabit Ethernet is comparable to that on Myrinet on a

16 node cluster.

� The Network Trunking technique improves performance on all benchmark programs.

� The performance di�erence between PM/Myrinet and PM/Ethernet on Fast Ethernet

is about 2 times at most.

These results show that a practical high-performance cluster system can be built using

a commodity network comparable in performance to a dedicated cluster system network.

117

Chapter 8

Conclusion

This thesis has been done in order to achieve the following purposes: proposing imple-

mentation designs which ensure the maximum communication performance on cluster sys-

tems using Gigabit Ethernet; and showing that communication using Gigabit Ethernet

can achieve comparable performance of application programs to dedicated cluster network

communication.

To achieve the purposes, the following designs are proposed:

� Hardware dependent designs

� Hardware independent designs using existing NICs

� Software techniques using multiple NICs

For hardware dependent designs, the following techniques are proposed: a reliable light-

weight communication protocol called "GoBack-N for PM" and also design techniques

which minimize information exchange cost based on a cost analysis of TCP/IP.

The GigaE PM communication facility has been implemented using these techniques on

the Essential Gigabit Ethernet NIC. The benchmark results show that the communication

bandwidth of GigaE PM is 1.7 times faster than that of the existing TCP/IP protocol,

and the round trip time of GigaE PM is about one third that of TCP/IP. Therefore,

the proposed method is e�ective in realizing high performance communication on Gigabit

Ethernet.

For hardware independent designs, a design method which reduces reliable protocol pro-

cessing overhead is proposed. The method is based on the results of a cost analysis of the

118

8 Conclusion

existing TCP/IP processing overhead.

According to the analysis, the interrupt overhead caused performance degradation in

addition to the TCP/IP protocol processing overhead. In order to eliminate the interrupt

overhead, a communication protocol processing method has been proposed. This method

does not use a software interrupt as existing protocols do. The Interrupt Reaping technique

has also been proposed. The use of a hardware interrupt is eliminated without modi�cation

of existing device drivers.

The PM/Ethernet communication facility has been implemented using these techniques

on the Packet Engines G-NIC II Gigabit Ethernet NIC. The performance benchmark results

show that the communication bandwidth of PM/Ethernet is 1.6 times faster than that of

the existing TCP/IP protocol, and the round trip time of PM/Ethernet is about one third

that of TCP/IP. These results show that the proposed method eliminates two thirds of the

TCP/IP processing cost.

As an another hardware independent technique, the Network Trunking technique has

been developed. It improves communication bandwidth using multiple NICs. The com-

munication performance benchmark results show that the bandwidth performance of P-

M/Ethernet with four digital 100 Base/T NICs is 3.6 times faster than that with one 100

Base/T NIC.

To show that communication using Gigabit Ethernet achieves comparable performance

of application programs, a communication facility which supports both a dedicated cluster

network and a commodity network has been developed. As a result of the evaluation using

the NAS parallel benchmarks, the performance of the IS benchmark on PM/Ethernet using

Gigabit Ethernet achieves comparable performance to that on PM/Myrinet on a 16 node

cluster. This result shows that practical high-performance cluster systems can be built

using a commodity network.

Using the method proposed above, it is veri�ed that a cluster system using a commodity

network can achieve comparable performance to that of a cluster system using a dedicated

cluster network.

119

Bibliography

[Aki99] Yutaka Akiyama. Bioinformatics. In IPSJ Magazine, volume 40(11), pages

1136{1138. the Information Processing Society of Japan, 1999.

[AMB] AMBER information:

http://www.amber.ucsf.edu/amber/amber.html.

[BBVvE97] Anindya Basu, Vineet Buch, Werner Vogels, and Thorsten von Eicken. U-

Net: A User-Level Network Interface for Parallel and Distributed Computing.

In Proceedings of the Third International Symposium on High Performance

Computer Architecture (HPCA), February 1997.

[BEO] The Beowulf Project:

http://www.beowulf.org/.

[BVI] Berkeley VIA Project:

http://www.millennium.berkeley.edu/via.php3.

[CC00] G. Chiola and G. Ciaccio. EÆcient parallel processing on low-cost clusters

with GAMMA active ports. In Parallel Computing, number 2-3, pages 333{

354. North Holland, February 2000.

[CMC97] B. N. Chun, A. M. Mainwaring, and D. E. Culler. Virtual Network Transport

Protocols for Myrinet. In Hot Interconnect'97, Aug 1997.

[CPL] The Computational Plant project:

http://www.cs.sandia.gov/cplant.

120

BIBLIOGRAPHY BIBLIOGRAPHY

[DBC+97] C. Dubnicki, A. Bilas, Y. Chen, S. Damianakis, and K. Li. VMMC-2: EÆcient

Support for Reliable, Connection-Oriented Communication. In Hot Intercon-

nect'97, August 1997.

[DBLP97] Cezary Dubnicki, Angelos Bilas, Kai Li, and James Philbin. Design and Im-

plementation of Virtual Memory-Mapped Communication on Myrinet. In the

IEEE 11th International Parallel Processing Symposium, April 1997.

[DOL] Dolphin Interconnect:

http://208.179.47.35/index.html.

[ETH] Development of the Earth Simulator:

http://www.gaia.jaeri.go.jp/public/e publicconts.html.

[FO00] Paul A. Farrell and Hong Ong. Communication Performance over a Gigabit

Ethernet Network. In 19th IEEE International Performance, Computing and

Communications Conference(IPCCC 2000), pages 181{189, February 2000.

[GM] The GM API:

http://www.myri.com/GM/doc/gm toc.html.

[GPT99] P. Geo�ray, L. Prylli, and B. Tourancheau. BIP-SMP: High Performance

Message Passing over a Cluster of Commodity SMPs. In Super computing 99,

Portland, USA, November 1999.

[HAM] Packet Engines Hamachi Performance:

http://www.nscl.msu.edu/~kasten/perf/hamachi/.

[HCP] Chronology of Personal Computers :

http://www.islandnet.com/~kpolsson/comphist/.

[HIH+00] Hiroshi Harada, Yutaka Ishikawa, Atsushi Hori, Hiroshi Tezuka, Shinji Sumi-

moto, and Toshiyuki Takahashi. Dynamic Home Node Reallocation on Soft-

ware Distributed Shared Memory. In 4Th HPC ASIA 2000, pages 158{163.

IEEE, May 2000.

121

BIBLIOGRAPHY BIBLIOGRAPHY

[HIK+93] Hori, Ishikawa, Konaka, Maeda, and Tomokiyo. Overview of Massively Parallel

Operating System Kernel SCore. In IPSJ SIG Notes, 93-OS-61, pages 57{64.

Information Processing Society of Japan, August 1993. (In Japanese).

[HIK+95] Atsushi Hori, Yutaka Ishikawa, Hiroki Konaka, Munenori Maeda, and Takashi

Tomokiyo. A Scalable Time-Sharing Scheduling for Partitionable, Distribut-

ed Memory Parallel Machines. In Proceedings of the Twenty-Eighth Annual

Hawaii International Conference on System Sciences, Vol. II, pages 173{182.

IEEE Computer Society Press, January 1995.

[HIN] Intel Museum, Processor Hall of Fame:

http://www.intel.com/intel/museum/25anniv/hof/hof main.htm.

[HIN+95] Atsushi Hori, Yutaka Ishikawa, J�org Nolte, Hiroki Konaka, Munenori Maeda,

and Takashi Tomokiyo. Time Space Sharing Scheduling: A Simulation Anal-

ysis. In S. Haridi, K. Ali, and P. Magnusson, editors, Euro-Par'95 Parallel

Processing, volume 966 of Lecture Notes in Computer Science, pages 623{634.

Springer-Verlag, August 1995.

[HIS+93] Hori, Ishikawa, Sakai, Konaka, Maeda, Tomokiyo, Matsuoka, Okamoto, Hi-

rono, and Yokota. Process management in SCore and hardware support for

massively parallel OS. In Computer System Symposium, volume 93, pages

59{66. Information Processing Society of Japan, October 1993. (In Japanese).

[HPV] High Performance Virtual Machines:

http://www-csag.ucsd.edu/projects/hpvm.html.

[HTI+96] Atsushi Hori, Hiroshi Tezuka, Yutaka Ishikawa, Noriyuki Soda, Hiroki Konaka,

and Munenori Maeda. Implementation of Gang-Scheduling on Workstation

Cluster. In D. G. Feitelson and L. Rudolph, editors, IPPS'96 Workshop on

Job Scheduling Strategies for Parallel Processing, volume 1162 of Lecture Notes

in Computer Science, pages 76{83. Springer-Verlag, April 1996.

122

BIBLIOGRAPHY BIBLIOGRAPHY

[HTI98] Atsushi Hori, Hiroshi Tezuka, and Yutaka Ishikawa. Highly EÆcient Gang

Scheduling Implementation. In SC'98, November 1998.

[HTT+99] Atsushi Hori, Hiroshi Tezuka, Toshiyuki Takahashi, Shinji Sumimoto, Noriyu-

ki Soda, Hiroshi Harada, and Yutaka Ishikawa. Programming Environment

for Clusters { SCore Cluster System Software {. In Special Interest Group Re-

port of the Information Processing Society of Japan 99-HPC-77 (SWoPP'99),

pages 83{88. the Information Processing Society of Japan, August 1999. (In

Japanese).

[HYI+95] Atsushi Hori, Takashi Yokota, Yutaka Ishikawa, Shuichi Sakai, Hiroki Konaka,

Munenori Maeda, Takashi Tomokiyo, J�org Nolte, Hiroshi Matsuoka, Kazuaki

Okamoto, and Hideo Hirono. Time Space Sharing Scheduling and Architec-

tural Support. In D. G. Feitelson and L. Rudolph, editors, Job Scheduling

Strategies for Parallel Processing, volume 949 of Lecture Notes in Computer

Science. Springer-Verlag, April 1995.

[IHK+93] Y. Ishikawa, A. Hori, H. Konaka, M. Maeda, and T. Tomokiyo. MPC++: A

Parallel Programming Language and Its Parallel Objects Support. In OOPSLA

1993 Workshop on EÆcient Implementation of Concurrent Object-Oriented

Languages, pages j1{j5, September 1993.

[IHK+94] Yutaka Ishikawa, Atsushi Hori, Hiroki Konaka, Maeda Munenori, and

Tomokiyo Takashi. Implementation of parallel programming language M-

PC++. In JSPP'94, pages 105{112, 1994.

[IHS+95] Yutaka Ishikawa, Atsushi Hori, Mitsuhisa Sato, Motohiko Matsuda, J�org

Nolte, Hiroshi Tezuka, Hiroki Konaka, Munenori Maeda, and Takashi

Tomokiyo. An overview of mpc++ { extended abstract {. In Takayasu Ito

and Jr. Robert H. Halstead, editors, International Workshop PSLS'95, volume

1068 of Lecture Notes in Computer Science, pages 243{249. Springer-Verlag,

October 1995.

123

BIBLIOGRAPHY BIBLIOGRAPHY

[IHT+96] Yutaka Ishikawa, Atsushi Hori, Hiroshi Tezuka, Motohiko Matsuda, Hiroki

Konaka, Munenori Maeda, Takashi Tomokiyo, and J�org Nolte. MPC++. In

Gregory V. Wilson and Paul Lu, editors, Parallel Programming Using C++,

pages 429{464. MIT Press, 1996.

[Ish96] Yutaka Ishikawa. Multi Thread Template Library { MPC++ Version 2.0 Level

0 Document {. Technical Report TR{96012, RWC, September 1996.

[ISS96] Yutaka Ishikawa, Mitsuhisa Sato, and Junichi Shimada. Toward A Seamless

Computing Environment. Technical Report TR{96013, RWC, September 1996.

[ITH+99] Yutaka Ishikawa, Hiroshi Tezuka, Atsushi Hori, Shinji Sumimoto, Toshiyuki

Takahashi, Francis O'Carroll, and Hiroshi Harada. RWC PC Cluster II and

SCore Cluster System Software { High Performance Linux Cluster. In Pro-

ceedings of the 5th Annual Linux Expo, pages 55 { 62, 1999.

[JR86] Michael B. Jones and Richard F. Rashid. Mach and matchmaker: Kernel and

language support for object-oriented distributed systems. In Conference on

Object-Oriented Programming Systems, Languages, and Applications (OOP-

SLA'86), volume SIGPLAN Notices 21, pages 67{77, November 1986.

[KISB99] Kazuto Kubota, Ken`ich Itakura, Mitsuhisa Sato, and Taiske Boku. Practical

Simulation of Large-Scale Parallel Programs and its Performance Analysis of

the NAS Parallel Benchmarks. In Euro-Par'98 Parallel Processing, pages 244{

254, January 1999.

[LAM] LAM / MPI Parallel Computing:

http://www.mpi.nd.edu/lam/.

[LMC97] S. S. Lumetta, A. M. Mainwaring, and D. E. Culler. Multi-protocol Active

messages on a cluster of smp's. In Super Computing(SC'97), November 1997.

[MEM] Architecture and Implementation of MEMORY CHANNEL2:

http://research.compaq.com/wrl/DECarchives/DTJ/DTJP03/DTJP03HM.HTM.

124

BIBLIOGRAPHY BIBLIOGRAPHY

[MPIa] The Message Passing Interface (MPI) standard:

http://www.mpi-forum.org.

[MPIb] MPICH-A Portable Implementation of MPI:

http://www-unix.mcs.anl.gov/mpi/mpich/.

[MVI] M-VIA: A High Performance Modular VIA for Linux:

http://www.nersc.gov/research/FTG/via/.

[MW97] T. von Eicken M. Welsh, A. Basu. Incorporating Memory Management into

User-Level Network Interfaces . In Proc. of Hot Interconnects V, August 1997.

[MYR] Myricom:

http://www.myri.com.

[N. 95] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J.

N. Seizovic and Wen-King Su. Myrinet { A Gigabit-per-Second Local-Area

Network. IEEE MICRO, 15(1):29{36, February 1995.

[NET] The Public Netperf:

http://www.netperf.org/.

[NOW] The Berkeley Network of Workstations (NOW) project:

http://now.cs.berkeley.edu/.

[NPB] The NAS Parallel Benchmarks (NPB):

http://www.nas.nasa.gov/Software/NPB/.

[OCD+88] John K. Ousterhout, Andrew R. Cherenson, Fred Douglis, Michael N. Nelson,

and Brent B. Welch. The sprite network operating system. In IEEE Computer,

volume 21, pages 23{36, 1988.

[OHT+97] Francis O'Carroll, Atsushi Hori, Hiroshi Tezuka, Yutaka Ishikawa, and Mit-

suhisa Sato. Performance of MPI on Workstation/PC Clusters using Myrinet.

In Proceedings of Cluster Computing Conference '97, March 1997.

125

BIBLIOGRAPHY BIBLIOGRAPHY

[OTHI98] Francis O'Carroll, Hiroshi Tezuka, Atsushi Hori, and Yutaka Ishikawa. The

Design and Implementation of Zero Copy MPI Using Commodity Hardware

with a High Performance Network. In ICS'98, pages 243 { 250, July 1998.

[PCI] PCI technical briefs:

http://www.intel.com/product/tech-briefs/pcibus.htm.

[PD80] D. A. Patterson and D. R. Ditzel. The case for the reduced instruction set

computer. In Computer Architecture News, volume 8, pages 25{33, October

1980.

[PIC] PCI Industrial Computer Manufacturers Group:

http://www.picmg.org/.

[PMA] PM 2.1 API:

http://pdswww.rwcp.or.jp/dist/score/html/reference/man/man3/PM.html.

[PT98] L. Prylli and B. Tourancheau. BIP: a new protocol designed for high perfor-

mance. In PC-NOW Workshop, held in parallel with IPPS/SPDP98, Orlando,

USA, Mar 30 { Apr 3 1998.

[PVM] Parallel Virtual Machine:

http://www.epm.ornl.gov/pvm/pvm home.html.

[RR81] Richard F. Rashid and George G. Robertson. Accent: A communication ori-

ented network operating system kernel. In the Eighth ACM Symposium on

Operating System Principles, volume Operating System Review 15, pages 64{

75, December 1981.

[RTO] Overview of Recent Supercomputers:

http://www.top500.org/ORSC/.

[RWC] Clustering Technologies at RWCP:

http://pdswww.rwcp.or.jp/clusters/home.html.

126

BIBLIOGRAPHY BIBLIOGRAPHY

[SCI] The Local Area Memory Port, Local Area MultiProcessor, Scalable Coherent

Interface, and Serial Express Users, Developers, and Manufacturers Associa-

tion:

http://www.scizzl.com/.

[SCL] Gigabit Ethernet and Low-Cost Supercomputing:

http://www.scl.ameslab.gov/Publications/Gigabit/tr5126.html.

[Sco95] Scott Pakin, Mario Lauria and Andrew Chein. High Performance Messaging

on Workstations: Illinois Fast Messages (FM) for Myrinet. In Proceedings of

Supercomputing '95, San Diego, California, 1995.

[SET] IEEE 802.3 CSMA/CD (ETHERNET):

http://grouper.ieee.org/groups/802/3/.

[SHR] The SHRIMP project:

http://www.cs.princeton.edu/shrimp/.

[SHT+99a] Shinji Sumimoto, Atsushi Hori, Hiroshi Tezuka, Hiroshi Harada, Toshiyuki

Takahashi, and Yutaka Ishikawa. GigaE PM II: Design of High Performance

Communication Library using Gigabit Ethernet. In Special Interest Group Re-

port of the Information Processing Society of Japan 99-ARC-134 (SWoPP'99),

pages 61{66. the Information Processing Society of Japan, August 1999. (In

Japanese).

[SHT+99b] Shinji Sumimoto, Atsushi Hori, Hiroshi Tezuka, Hiroshi Harada, Toshiyuki

Takahashi, and Yutaka Ishikawa. Performance evaluation of gigabit ether-

net nic. In Special Interest Group Report of Information Processing Society

of Japan 99-HPC-75 (HOKKE`99), pages 49{54. the Information Processing

Society of Japan, March 1999. (In Japanese).

[SHT+00a] Shinji Sumimoto, Atsushi Hori, Hiroshi Tezuka, Hiroshi Harada, Toshiyuki

Takahashi, and Yutaka Ishikawa. High Performance Communication for Clus-

ter Systems using an Existing Operating System Framework. In Transactions

127

BIBLIOGRAPHY BIBLIOGRAPHY

of the Information Processing Society of Japan, Vol. 41, Number 6, pages 1688{

1696. the Information Processing Society of Japan, June 2000. (in Japanese).

[SHT+00b] Shinji Sumimoto, Atsushi Hori, Hiroshi Tezuka, Hiroshi Harada, Toshiyuki

Takahashi, and Yutaka Ishikawa. The Design and Evaluation of High Per-

formance Communication Facility: PM2. In Transactions of the Information

Processing Society of Japan, Vol. 41 No.SIG 5 (HPS 1), pages 80{90, August

2000.

[SIP] Peripheral Component Interconnect(PCI) Special Interest Group (PCI SIG):

http://www.pcisig.com/.

[SIS] ISA BUS OVERVIEW:

http://quatech.salcomm.com/Application Objects/FAQs/comm-over-

isa.htm.

[SPC] PCI BUS OVERVIEW :

http://quatech.salcomm.com/Application Objects/FAQs/comm-over-

pci.htm.

[SPE] The Standard Performance Evaluation Corp (SPEC):

http://www.spec.org/.

[Ste] W. Richard Stevens. In UNIX Network Programming, Volume 1: Networking

APIs - Sockets and XTI. Prentice Hall.

[T. 92] T. von Eicken, D. E. Culler, S. C. Goldstein and K. E. Schauser. Active

messages: a Mechanism for Integrated Communication and Computation. In

In Proc. of the 19th ISCA, pages 256{266, May 1992.

[T. 94] T. von Eicken, V. Avula, A. Basu and V. Buch. Low-Latency Communica-

tion over ATM Networks using Active Messages. In In Proceedings of Hot

Interconnects II, 1994 Palo Alto, August 1994.

128

BIBLIOGRAPHY BIBLIOGRAPHY

[T. 95] T. Sterling, D. Savarese, D. J. Becker, B. Fryxell, K. Olson. Communication

Overhead for Space Science Applications on the Beowulf Parallel Workstation.

In Proceedings of the Fourth IEEE Symposim on High Performance Distributed

Computing(HPDC-95), August 1995.

[THI96] Hiroshi Tezuka, Atsushi Hori, and Yutaka Ishikawa. Design and Implementa-

tion of PM: A Communication Library for Workstation Cluster. In JSPP'96,

pages 41{48. the Information Processing Society of Japan, June 1996. (In

Japanese).

[THIS97] Hiroshi Tezuka, Atsushi Hori, Yutaka Ishikawa, and Mitsuhisa Sato. PM: An

Operating System Coordinated High Performance Communication Library.

In Peter Sloot Bob Hertzberger, editor, High-Performance Computing and

Networking, volume 1225 of Lecture Notes in Computer Science, pages 708{

717. Springer-Verlag, April 1997.

[TISY] Tosiyuki Takahashi, Yutaka Ishikawa, Mitsuhisa Sato, and Akinori Yonezawa.

Class speci�c optimization environment using compile-time metalevel archi-

tecture. In ISCOPE'97.

[TLC85] Marvin Theimer, Keith A. Lantz, and David R. Cheriton. Preemptable remote

execution facilities for the v-system. In the Tenth ACM Symposium on Op-

erating System Principles, volume Operating System Review 19, pages 2{12,

December 1985.

[TOHI98] Hiroshi Tezuka, Francis O'Carroll, Atsushi Hori, and Yutaka Ishikawa. Pin-

down Cache: A Virtual Memory Management Technique for Zero-copy Com-

munication. In IPPS/SPDP'98, pages 308{314. IEEE, April 1998.

[TOT+99] Toshiyuki Takahashi, Francis O'Carroll, Hiroshi Tezuka, Atsushi Hori, Shinji

Sumimoto, Hiroshi Harada Yutaka Ishikawa, and Pete H. Beckman. Implemen-

tation and Evaluation of MPI on an SMP Cluster. In Parallel and Distribut-

ed Processing { IPPS/SPDP'99 Workshops, volume 1586 of Lecture Notes in

Computer Science, pages 1178{1192. Springer-Verlag, April 1999.

129

BIBLIOGRAPHY BIBLIOGRAPHY

[TSH+00] Toshiyuki Takahashi, Shinji Sumimoto, Atsushi Hori, Hiroshi Harada, and

Yutaka Ishikawa. PM2: A High Performance Communication Middleware for

Heterogeneous Network Environments. In Supercomputing 2000, IEEE and

ACM SIGARCH, November, 2000, (Published by CD-ROM)., November 2000.

[VIA] THE SPECIFICATION FOR THE VIRTUAL INTERFACE ARCHITEC-

TURE:

http://www.viarch.org/.

130

List of Publications by the Author

Articles on which this dissertation is based

1 Shinji Sumimoto, Hiroshi Tezuka, Atsushi Hori, Hiroshi Harada, Toshiyuki Taka-

hashi, and Yutaka Ishikawa: GigaE PM: a High Performance Communication Facili-

ty using a Gigabit Ethernet, New Generation Computing, Springer-Verlag, Vol. 18,

pages 177{186, January, 2000.

2 Shinji Sumimoto, Atsushi Hori, Hiroshi Tezuka, Hiroshi Harada, Toshiyuki Taka-

hashi, and Yutaka Ishikawa: GigaE PM: The Design and Evaluation of High Perfor-

mance Communication Facility Using a Gigabit Ethernet, Transactions of Informa-

tion Processing Society of Japan, Information Processing Society of Japan, Vol. 41,

Number 5, pages 1390{1399, May, 2000. (in Japanese)

3 Shinji Sumimoto, Atsushi Hori, Hiroshi Tezuka, Hiroshi Harada, Toshiyuki Taka-

hashi, and Yutaka Ishikawa: High Performance Communication for Cluster Systems

using an Existing Operating System Framework, Transactions of Information Pro-

cessing Society of Japan, Information Processing Society of Japan, Vol. 41, Number

6, pages 1688{1696, June, 2000. (in Japanese)

4 Shinji Sumimoto, Atsushi Hori, Hiroshi Tezuka, Hiroshi Harada, Toshiyuki Taka-

hashi, and Yutaka Ishikawa: The Design and Evaluation of High Performance Com-

munication Facility: PM2, Transactions of Information Processing Society of Japan,

Information Processing Society of Japan, Vol. 41, Number SIG 5(HPS 1), pages

80{90, August, 2000. (in Japanese)

131

5 Shinji Sumimoto, Hiroshi Tezuka, Atsushi Hori, Hiroshi Harada, Toshiyuki Taka-

hashi, and Yutaka Ishikawa: The Design and Evaluation of High Performance Com-

munication using a Gigabit Ethernet, International Conference on Supercomputing

`99(ICS'99), ACM SIGARCH, pages 243 { 250, June, 1999.

6 Shinji Sumimoto, Hiroshi Tezuka, Atsushi Hori, Hiroshi Harada, Toshiyuki Taka-

hashi, and Yutaka Ishikawa: High Performance Communication using a Commodity

Network for Cluster Systems, in the Ninth International Symposium on High Perfor-

mance Distributed Computing (HPDC-9), IEEE, pages 139{146, August, 2000.

7 Toshiyuki Takahashi, Shinji Sumimoto, Atsushi Hori, Hiroshi Harada, and Yuta-

ka Ishikawa: PM2: A High Performance Communication Middleware for Heteroge-

neous Network Environments, Supercomputing 2000, IEEE and ACM SIGARCH,

Novemver, 2000, (Published by CD-ROM).

8 Yutaka Ishikawa, Hiroshi Tezuka, Atsushi Hori, Shinji Sumimoto, Toshiyuki Taka-

hashi, F. O'Carroll, and Hiroshi Harada: RWC PC Cluster II and SCore Cluster

System Software { High Performance Linux Cluster, In Proceedings of the 5th Annu-

al Linux Expo, pages 55 { 62, 1999.

9 Toshiyuki Takahashi, Francis O'Carroll, Hiroshi Tezuka, Atsushi Hori, Shinji Sumimoto,

Hiroshi Harada, Yutaka Ishikawa, and Pete H. Beckman: Implementation and Eval-

uation of MPI on an SMP Cluster, IPPS'99 2nd Workshop on Personal Computer

Based Networks of Workstations, pages 1178 { 1192, 1999.

132

Other articles on which this dissertation is based

1 Hiroshi Harada, Hiroshi Tezuka, Atsushi Hori, Shinji Sumimoto, Toshiyuki Taka-

hashi, and Yutaka Ishikawa: SCASH:Software DSM using High performance network

on commodity hardware and software, ACM Eighth Workshop on Scalable Shared-

memory Multiprocessors, pages 26{27, 1999.

2 Yasushi Fujiimoto, Yuan Bin, Hisao Taoka, Hiroshi Tezuka, Shinji Sumimoto and Yu-

taka Ishikawa: Design and Implementation of a Real-Time Power System Simulator

using a PC Cluster, 3rd Intl. conf. on Digital Power System Simulator, IEEE, May,

1999, (no page number).

3 Yasushi Fujiimoto, Yuan Bin, Hisao Taoka, Hiroshi Tezuka, Shinji Sumimoto and

Yutaka Ishikawa: Real-time Power System Simulator on a PC Cluster, Intl. conf. on

Power Systems Transients, pp 671{676, June, 1999.

4 Yutaka Ishikawa, Atsushi Hori, Hiroshi Tezuka, Shinji Sumimoto, Toshiyuki Taka-

hashi, and Hiroshi Harada: Parallel C++ Programming System on Cluster of Hetero-

geneous Computers, IPPS'99 Heterogeneous Computing Workshop '99,pages 73{82,

April, 1999.

5 Hiroshi Harada, Yutaka Ishikawa, Hiroshi Tezuka, Atsushi Hori, Shinji Sumimoto,

and Toshiyuki Takahashi: Dynamic Home Node Reallocation on Software Distributed

Shared Memory, HPC Asia '2000, pages 158{163, May 2000.

6 Hiroshi Harada, Hiroshi Tezuka, Atsushi Hori, Shinji Sumimoto, Toshiyuki Taka-

hashi, and Yutaka Ishikawa: Comparison of Page Transfer Method on Software Dis-

tributed Shared Memory System, Transactions of Information Processing Society of

Japan, Information Processing Society of Japan, Vol. 41, Number 5, pages 1410{1419,

May, 2000. (in Japanese)

133

7 Shinji Sumimoto, Yutaka Ishikawa, Atsushi Hori, Hiroshi Tezuka, Hiroshi Harada,

and Toshiyuki Takahashi: Design of High Performance Comminication Library on

Gigabit Ethernet, Special Interest Group Report of Information Processing Society of

Japan 98-HPC-72 (SWoPP'98), Information Processing Society of Japan, pages 109{

114, August, 1998, (in Japanese).

8 Shinji Sumimoto, Atsushi Hori, Hiroshi Tezuka, Hiroshi Harada, Toshiyuki Taka-

hashi, and Yutaka Ishikawa: Performance Evaluation of Gigabit Ethernet NIC, Spe-

cial Interest Group Report of Information Processing Society of Japan 99-HPC-75

(HOKKE`99), Information Processing Society of Japan, pages 49{54, March, 1999,

(in Japanese).

9 Shinji Sumimoto, Atsushi Hori, Hiroshi Tezuka, Hiroshi Harada, Toshiyuki Taka-

hashi, and Yutaka Ishikawa: The Design and Evaluation of High Performance Com-

munication Library Using a Gigabit Ethernet, Proceedings of JSPP'99, Information

Processing Society of Japan, pages 63 { 70, June, 1999, (in Japanese).

10 Shinji Sumimoto, Atsushi Hori, Hiroshi Tezuka, Hiroshi Harada, Toshiyuki Taka-

hashi, and Yutaka Ishikawa: GigaE PM II: Design of High Performance Comminica-

tion Library using Gigabit Ethernet, Special Interest Group Report of Information

Processing Society of Japan 99-ARC-134 (SWoPP'99), Information Processing Soci-

ety of Japan, pages 61{66, August, 1999, (in Japanese).

11 Atsushi Hori, Hiroshi Tezuka, Toshiyuki Takahashi, Shinji Sumimoto, Noriyuki So-

da, Hiroshi Harada, and Yutaka Ishikawa: Programming Environment for Clusters {

SCore Cluster System Software {, Special Interest Group Report of Information Pro-

cessing Society of Japan 99-HPC-77 (SWoPP'99), Information Processing Society of

Japan, pages 83{88, August, 1999, (in Japanese).

134

12 Noriyuki Soda, Hiroshi Tezuka, Shinji Sumimoto, Atsushi Hori, and Yutaka Ishikawa:

Porting and Evaluation of PM communication library on UDP Special Interest Group

Report of Information Processing Society of Japan 99-HPC-75 (HOKKE`99), Infor-

mation Processing Society of Japan, pages 127{132, March, 1999, (in Japanese).

13 Hiroshi Harada, Hiroshi Tezuka, Atsushi Hori, Shinji Sumimoto, Toshiyuki Taka-

hashi, and Yutaka Ishikawa: Evaluation of Software Distributed Shared Memory

System on Myrinet, Special Interest Group Report of Information Processing Society

of Japan 98-HPC-73, Information Processing Society of Japan, pages 73{78, October,

1998, (in Japanese).

14 Hiroshi Harada, Hiroshi Tezuka, Atsushi Hori, Shinji Sumimoto, Toshiyuki Taka-

hashi, and Yutaka Ishikawa: Implementation and Evaluation of Memory Barrier

on Software Distributed Shared Memory on Myrinet Proceedings of JSPP'99, Infor-

mation Processing Society of Japan, pages 237 { 244, June, 1999, (in Japanese).

15 Hiroshi Harada, Yutaka Ishikawa, Atsushi Hori, Hiroshi Tezuka, Shinji Sumimoto,

and Toshiyuki Takahashi: Implementation and Evaluation of dynamic page manager

node reallocation mechanism on SCASH Software Distributed Shared Memory Spe-

cial Interest Group Report of Information Processing Society of Japan 99-HPC-77

(SWoPP'99), Information Processing Society of Japan, pages 89{94, August, 1999,

(in Japanese).

16 Toshiyuki Takahashi, Francis O'Carroll, Atsushi Hori, Hiroshi Tezuka, Shinji Sumimoto,

Hiroshi Harada, and Yutaka Ishikawa: Implementation and Evaluation of MPI on a

SMP Cluster, Special Interest Group Report of Information Processing Society of

Japan 98-HPC-72 (SWoPP'98), Information Processing Society of Japan, pages 115{

120, August, 1998, (in Japanese).

135

Other articles which the author has written

1 Shinji Sumimoto: The Implementation and Evaluation of Shared Filesystem for Clus-

ter Systems: Special Interest Group Report of Information Processing Society of

Japan 95-HPC-70 (SWoPP'95), Information Processing Society of Japan, pages 9{

16, August, 1995, (in Japanese).

2 Shinji Sumimoto: \Design and Evaluation of Fault-Tolerant Shared File System for

Cluster Systems." The Twenty-Sixth Annual International Symposium on Fault-

Tolerant Computing, IEEE, pages 74 { 83, June, 1996.

136

Appendix A

Performance and Costs of

Commodity Hardware

A.1 CPU Performance and Memory Performance

Table A.1: SPEC95, System Call Cost and Memory Copy Performance

Year Microprocessor
SPEC95 System Memory
int fp Call Cost Copy

1995. Pentium PRO 200 MHz 8.2 6.8 1.9 �s 52.3 MB/s
1997. Pentium II 300 MHz 11.9 8.6 1.6 �s 100.0 MB/s
1998. Pentium III 500 MHz 20.6 14.7 1.0 �s 140.0 MB/s
1999. Pentium III 800 MHz 38.9 32.5 0.46 �s 170.0 MB/s

Table A.1 shows the SPEC95 benchmark results[SPE], system call cost, and memory

copy performance on several Intel processor based systems. The SPEC95 benchmark is

a benchmark suite designed to measure and compare computer performance across dif-

ferent hardware platforms developed by the Open Systems Group (OSG). OSG includes

more than 30 computer vendors, systems integrators, publishers and consultants, and is

part of the Standard Performance Evaluation Corp (SPEC). SPEC95 comprises two suites

of benchmarks: SPECint95 for computation-intensive integer performance measurement

and SPECfp95 for computation-intensive
oating point performance measurement. The

SPECint95 and SPECfp95 result numbers are based on the results achieved on a Sun S-

PARCstation10/40 with 128 MB of memory and are both taken as "1." The system call

cost results are measured in order to evaluate kernel trap overhead using a getpid() system

137

A Performance and Costs of Commodity Hardware A.2. Hardware Interrupt Costs

call which gets the process id. The memory copy performance was measured using a 10

MB memory copy to minimize CPU cache e�ect.

The SPEC95 and memory copy performance results in Table 2.1 show that CPU and

memory performance improve as the CPU clock speed increases. Table 2.1 also shows that

the system call cost decreases as the CPU clock speed increases.

A.2 Hardware Interrupt Costs

Table A.2: Hardware Interrupt Cost

Year Microprocessor
Interrupt
Cost

1996. Pentium 150 MHz 5.6 �s
1997. Pentium II 400 MHz 6.5 �s
1998. Pentium III 500 MHz 5.9 �s

Table A.2 shows interrupt costs on several Intel processor-based systems. These costs are

given by the time to reach the device driver routine after the NIC writes to the processor

interrupt register on the Linux operating system. The results in Table 2.1 show that the

interrupt cost does not decrease when the CPU clock speed increases.

A.3 I/O Bus Performance

Table A.3 shows the PCI DMA performance of a Myrinet NIC[MYR] on several Intel

processor-based systems using Intel 440FX, 440BX, ServerSet III LE, and Intel i840 chipset-

s. These results were measured using the PCI DMA between host memory and Myrinet

memory. The PCI DMA is triggered by the host CPU. Table A.3 shows that both the

Intel 440FX and 440BX chipsets achieve almost maximum performance on a 32bit 33MHz

PCI bus at a 64KB data transfer rate and that the ServerSet III LE achieves maximum

performance on a 64bit 33MHz PCI bus. However, on a 64bit 66MHz PCI bus, PCI D-

MA performance depends on the chipset. The ServerSet III LE achieves over 500MB/s

of bandwidth, however the Intel i840 chipset achieves 298MB/s of bandwidth at a 64KB

data transfer rate from NIC to host memory, and only 159MB/s of bandwidth at a 64KB

138

A Performance and Costs of Commodity Hardware A.3. I/O Bus Performance

data transfer rate from host to NIC memory. Table A.3 also shows that the PCI DMA

performances avchieved at a 1KB data transfer rate are around 80-90 MB/s, even on a

64bit 66MHz PCI bus is used.

Table A.3: PCI DMA Performance

Chipset PCI Directions
PCI DMA Message Size (MB/s)

1KB 2KB 4KB 8KB 64KB
Intel

32bit, 33MHz
Host ! NIC 82.7 115.9 125.2 128.0 130.7

440FX NIC ! Host 82.5 119.7 127.5 130.5 133.4
Intel

32bit, 33MHz
Host ! NIC 84.8 87.2 115.8 117.5 120.7

440BX NIC ! Host 84.7 118.7 125.6 129.5 132.2
ServerSet

64bit, 33MHz
Host ! NIC 70.2 140.3 134.8 179.0 260.2

III LE NIC ! Host 66.1 131.2 197.5 226.8 259.7
ServerSet

64bit, 66MHz
Host ! NIC 88.0 175.9 352.1 437.4 505.4

III LE NIC ! Host 84.7 169.5 338.8 475.0 522.6
Intel

64bit, 66MHz
Host ! NIC 81.3 86.6 117.2 143.4 158.4

i840 NIC ! Host 79.1 157.2 259.1 279.1 298.2

Evaluation Environments:
Intel 440FX: Pentium PRO 200MHz, 32bit Myrinet NIC
Intel 440BX: Pentium III 500MHz, 32bit Myrinet NIC
ServerSet III LE: Pentium III 800MHz, 64bit Myrinet NIC
Intel i840: Pentium III Xeon 733MHz, 64bit Myrinet NIC

139

Appendix B

GigaE PM Protocol

In this appendix, the GigaE PM network protocol is described in detail. There are sending

and receiving bu�ers for each channel. All out-going messages are stored in the sending

bu�er and all in-coming messages are stored in the receiving bu�er. Unlike TCP/IP, bu�ers

are not allocated with respect to peer to peer communication, but are allocated with respect

to a channel.

A message is represented by Msg(SenderID;ReceiverID;

DataMessageSequenceNumber). Let N represent the number of messages that the sender

may send asynchronously without waiting for an ACK. Timeout is referred to as T . Let

SBuf(r; i) represent the message bu�er where the ith message is sent to the receiver

r. Let ST ime(r; i) represent the time when the ith message is sent to the receiver r.

MsgIdSent(r) keeps the largest sequence number of a message which has been sent to

the receiver r. MsgIdRecv(s) keeps the largest sequence number of a message sent by

the sender s and received by the receiver. MsgIdAcked(r) keeps the largest sequence

number of an ACK message received from the receiver r. At initialization,MsgIdSent(r),

MsgIdRecv(s) and MsgIdAcked(r) are 0.

The GigaE PM protocol on sender and receiver nodes is described as follows:

On a Sender Node:

S1 Sender s may send receiver r messages 8Msg(s; r; i) where

MsgIdSent(r) < i < MsgIdAcked(r) + N

For each message Msg(s; r; i), the following procedure is performed:

140

B GigaE PM Protocol

1 The Msg(s; r; i) is sent to the receiver.

2 The sender message bu�er SBuf(r; i) of Msg(s; r; i) is created and kept.

3 The current time is kept in ST ime(r; i).

4 MsgIdSent(r) MsgIdSent(r) + 1.

S2 When the di�erence between the current time and ST ime(s; r; i) is larger than T , the

following procedure is performed:

1 MsgIdSent(r) i .

2 Perform S1.

- If a LOSE message LOSE(r; k) where

MsgIdAcked(r) < k < MsgIdAcked(r) + N

is received,

release the sender message bu�er, 8SBuf(r; i) where MsgIdAcked(r) < k.

1 MsgIdSent(r) k.

2 MsgIdAcked(r) k.

3 Perform S1.

- If a STOP message STOP (r; k) where

MsgIdAcked(r) < k < MsgIdAcked(r) + N

is received,

1 release the sender message bu�er, 8SBuf(r; i) where MsgIdAcked(r) < k.

2 MsgIdAcked(r) k.

3 Stop sending.

- If a GO message GO(r; k) where

MsgIdAcked(r) � k < MsgIdAcked(r) +N

is received, perform S1.

141

B GigaE PM Protocol

- If an ACK message ACK(r; k) where

MsgIdAcked(r) � k < MsgIdAcked(r) +N

is received,

1 MsgIdAcked(r) k.

2 Perform S1.

On a Receiver Node:

- When receiver r receives message Msg(s; r; i),

� In the case where MsgIdRecv(s) + 1 = i and the receiver bu�er on the host is

not full,

{ An ACK message ACK(r; i) is sent back to sender s.

{ The message is transferred to the host.

{ MsgIdRecv(s) MsgIdRecv(s) + 1.

� In the case where MsgIdRecv(s) + 1 = i and the receiver bu�er on the host is

full,

{ A STOP message STOP (r; i) is sent back to sender s.

{ All subsequent received messages are discarded.

� In the case where MsgIdRecv(s) + 1 < i which means that a message has been

lost, a LOSE message LOSE(r;MsgIdRecv(s)) is sent back to the sender s.

- When the receive bu�er on the host again has room and a STOP message has been sent,

A GO message GO(r;MsgIdRecv(s) + 1) is sent back to sender s. Then receiver r

can again receive messages.

142

Appendix C

NAS Parallel Benchmarks

The Numerical Aerospace Simulation (NAS) Parallel Benchmarks[NPB] are a set of 8

programs designed to evaluate the performance of parallel supercomputers. The NPB was

developed by the Numerical Aerospace Simulation Systems Division of the NASA Ames

Research Center in order to provide the Nation's aerospace research and development

community a high-performance, operational computing system capable of simulating an

entire aerospace vehicle system within a computing time of one to several hours. The

programs of the NPB suite are based on computational
uid dynamics (CFD) applications.

The NPB programs are written using MPI, so, the NPB programs can be executed on any

system which supports MPI. The NPB programs have several classes which depend on data

size, called class S, W, A, B, C and D. Class S uses the smallest data size and class D the

largest. All of the NPB programs, except IS, execute
oating point calculations, and the

communication patterns of each benchmark program are di�erent from the others.

Table C.1 shows the NPB programs and their dominant message characteristics. Class

A 16 node programs are used to show examples of message communication patterns: ap-

proximate message sizes, number of messages and execution time on a 16 node cluster

with a Pentium III 500MHz processor and Myrinet. These results are based on the same

histogram data on which the [TSH+00] paper was based. The message sizes and number

of messages are di�erent based on the number of nodes and the class.

Table C.1 shows that the IS, CG and FT programs are sensitive to communication band-

width and latency. The EP, LU, MG, BT and SP programs are not sensitive to commu-

nication performance when compared with IS, CG and FT [KISB99, SHT+00b, TSH+00].

143

C NAS Parallel Benchmarks

Table C.1: NAS Parallel Benchmarks and Dominant Message Characteristics on Class A,
16 Node programs

Name Note
Message Characteristics on Class A, 16 node
Dominant Sizes Number of Execution

of Messages Messages Time
CG Conjugate Gradient 16 - 32 KBytes 1248 / PE 3.92 sec.
EP Embarrassingly Parallel 8 - 16 Bytes 12 / PE 24.18 sec.
FT Fourier Transform 512 - 1024 KBytes 128 / PE 14.11 sec.
IS Integer Sort 64 - 256 KBytes 176 / PE 1.68 sec.
LU LU Decomposition 512 - 1024 Bytes 46000 / PE 77.97 sec.
MG Multi-Grid 8 Bytes - 256 KBytes 832 / PE 5.17 sec.
BT Block Tridiagonal Solver 16 - 128 KBytes 4800 / PE 161.89 sec.
SP Pentadiagonal Solver 16 - 64 KBytes 9600 / PE 115.01 sec.

The IS and FT programs use All-to-All collective communication. The dominant message

size of the FT Class A program is in the 512{1024 KBytes range on a 16 node cluster, that

of IS is in the 64{256 KBytes range. The CG program uses neighbor to neighbor commu-

nication and sends a number of messages continuously. The dominant message size of CG

Class A is in the 16{32 KBytes range. The LU program also uses neighbor to neighbor

communication and sends messages periodically. The dominant message size of LU Class A

is in the 512{1024 Bytes range.

The NPB results on several commercial parallel computers are published on the NPB web

page (http://www.nas.nasa.gov/Software/NPB/). The NPB results have been widely mea-

sured on a number of parallel machines, and published in various papers. So, researchers

can compare their performance with that of others.

144

Appendix D

NPB Results on RWC SCore

Cluster I

Figures D.1, D.2, D.3, D.4, D.5, D.6, D.7 and D.8 show the results of tests using the NAS

parallel benchmark on RWC SCore Cluster I.

0

200

400

600

800

1000

1200

0 2 4 6 8 10 12 14 16 18

T
ot

al
 M

op
s

Number of PE

NPB2.3 BT Class A Results on SCore Cluster I

TCP/IP(MPI/LAM) on 100BaseT
PM/Ethernet(MPICH/SCore) on 100BaseT

TCP/IP(MPI/LAM) on GigaEther
PM/Ethernet(MPICH/SCore) on GigaEther

PM/Myrinet(MPICH/SCore)

Figure D.1: NPB BT CLASS A on RWC SCore Cluster I

145

D NPB Results on RWC SCore Cluster I

0

50

100

150

200

250

300

350

400

0 2 4 6 8 10 12 14 16 18

T
ot

al
 M

op
s

Number of PE

NPB2.3 CG Class A Results on SCore Cluster I

TCP/IP(MPI/LAM) on 100BaseT
PM/Ethernet(MPICH/SCore) on 100BaseT

TCP/IP(MPI/LAM) on GigaEther
PM/Ethernet(MPICH/SCore) on GigaEther

PM/Myrinet(MPICH/SCore)

Figure D.2: NPB CG CLASS A on RWC SCore Cluster I

0

5

10

15

20

25

0 2 4 6 8 10 12 14 16 18

T
ot

al
 M

op
s

Number of PE

NPB2.3 EP Class A Results on SCore Cluster I

TCP/IP(MPI/LAM) on 100BaseT
PM/Ethernet(MPICH/SCore) on 100BaseT

TCP/IP(MPI/LAM) on GigaEther
PM/Ethernet(MPICH/SCore) on GigaEther

PM/Myrinet(MPICH/SCore)

Figure D.3: NPB EP CLASS A on RWC SCore Cluster I

146

D NPB Results on RWC SCore Cluster I

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14 16 18

T
ot

al
 M

op
s

Number of PE

NPB2.3 IS Class A Results on SCore Cluster I

TCP/IP(MPI/LAM) on 100BaseT
PM/Ethernet(MPICH/SCore) on 100BaseT

TCP/IP(MPI/LAM) on GigaEther
PM/Ethernet(MPICH/SCore) on GigaEther

PM/Myrinet(MPICH/SCore)

Figure D.4: NPB IS CLASS A on RWC SCore Cluster I

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18

T
ot

al
 M

op
s

Number of PE

NPB2.3 LU Class A Results on SCore Cluster I

TCP/IP(MPI/LAM) on 100BaseT
PM/Ethernet(MPICH/SCore) on 100BaseT

TCP/IP(MPI/LAM) on GigaEther
PM/Ethernet(MPICH/SCore) on GigaEther

PM/Myrinet(MPICH/SCore)

Figure D.5: NPB LU CLASS A on RWC SCore Cluster I

147

D NPB Results on RWC SCore Cluster I

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10 12 14 16 18

T
ot

al
 M

op
s

Number of PE

NPB2.3 MG Class A Results on SCore Cluster I

TCP/IP(MPI/LAM) on 100BaseT
PM/Ethernet(MPICH/SCore) on 100BaseT

TCP/IP(MPI/LAM) on GigaEther
PM/Ethernet(MPICH/SCore) on GigaEther

PM/Myrinet(MPICH/SCore)

Figure D.6: NPB MG CLASS A on RWC SCore Cluster I

0

100

200

300

400

500

600

0 2 4 6 8 10 12 14 16 18

T
ot

al
 M

op
s

Number of PE

NPB2.3 FT Class A Results on SCore Cluster I

TCP/IP(MPI/LAM) on 100BaseT
PM/Ethernet(MPICH/SCore) on 100BaseT

TCP/IP(MPI/LAM) on GigaEther
PM/Ethernet(MPICH/SCore) on GigaEther

PM/Myrinet(MPICH/SCore)

Figure D.7: NPB FT CLASS A on RWC SCore Cluster I

148

D NPB Results on RWC SCore Cluster I

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10 12 14 16 18

T
ot

al
 M

op
s

Number of PE

NPB2.3 SP Class A Results on SCore Cluster I

TCP/IP(MPI/LAM) on 100BaseT
PM/Ethernet(MPICH/SCore) on 100BaseT

TCP/IP(MPI/LAM) on GigaEther
PM/Ethernet(MPICH/SCore) on GigaEther

PM/Myrinet(MPICH/SCore)

Figure D.8: NPB SP CLASS A on RWC SCore Cluster I

149

Appendix E

NPB Results on RWC PC Cluster II

Figures E.1, E.2, E.3, E.4, E.5, E.6, E.7 and E.8 show the results of tests using the NAS

parallel benchmark on RWC PC Cluster II.

0

500

1000

1500

2000

2500

3000

3500

0 20 40 60 80 100 120

T
ot

al
 M

op
s

Number of PE

NPB2.3 BT Class B Results on PCC2

PM/Myrinet
PM/Ethernet on 100BaseT

TCP/IP on 100BaseT

Figure E.1: NPB BT CLASS B on RWC PC Cluster II

150

E NPB Results on RWC PC Cluster II

0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100 120

T
ot

al
 M

op
s

Number of PE

NPB2.3 CG Class B Results on PCC2

PM/Myrinet
PM/Ethernet on 100BaseT

TCP/IP on 100BaseT

Figure E.2: NPB CG CLASS B on RWC PC Cluster II

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120

T
ot

al
 M

op
s

Number of PE

NPB2.3 EP Class B Results on PCC2

PM/Myrinet
PM/Ethernet on 100BaseT

TCP/IP on 100BaseT

Figure E.3: NPB EP CLASS B on RWC PC Cluster II

151

E NPB Results on RWC PC Cluster II

0

20

40

60

80

100

120

0 20 40 60 80 100 120

T
ot

al
 M

op
s

Number of PE

NPB2.3 IS Class B Results on PCC2

PM/Myrinet
PM/Ethernet on 100BaseT

TCP/IP on 100BaseT

Figure E.4: NPB IS CLASS B on RWC PC Cluster II

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 20 40 60 80 100 120

T
ot

al
 M

op
s

Number of PE

NPB2.3 LU Class B Results on PCC2

PM/Myrinet
PM/Ethernet on 100BaseT

TCP/IP on 100BaseT

Figure E.5: NPB LU CLASS B on RWC PC Cluster II

152

E NPB Results on RWC PC Cluster II

0

500

1000

1500

2000

2500

3000

3500

0 20 40 60 80 100 120

T
ot

al
 M

op
s

Number of PE

NPB2.3 MG Class B Results on PCC2

PM/Myrinet
PM/Ethernet on 100BaseT

TCP/IP on 100BaseT

Figure E.6: NPB MG CLASS B on RWC PC Cluster II

0

500

1000

1500

2000

2500

0 20 40 60 80 100 120

T
ot

al
 M

op
s

Number of PE

NPB2.3 FT Class B Results on PCC2

PM/Myrinet
PM/Ethernet on 100BaseT

TCP/IP on 100BaseT

Figure E.7: NPB FT CLASS B on RWC PC Cluster II

153

E NPB Results on RWC PC Cluster II

0

500

1000

1500

2000

2500

0 20 40 60 80 100 120

T
ot

al
 M

op
s

Number of PE

NPB2.3 SP Class B Results on PCC2

PM/Myrinet
PM/Ethernet on 100BaseT

TCP/IP on 100BaseT

Figure E.8: NPB SP CLASS B on RWC PC Cluster II

154

