The OSCAR Solution Stack for Cluster Computing

The OSCAR Solution Stack for Cluster Computing

Tim Mattson
Intel Corp
Computational Software labs
U.S.A.
timothy.g.mattson@intel.com

Agenda

- Cluster Computing Software Stacks
 - What they are and why we desperately need a common base software stack.
- OSCAR and the Open Cluster Group
- OSCAR Today
- OSCAR Tomorrow
- Cluster Computing Standards

The OSCAR Solution Stack for Cluster Computing
Intel likes cluster since they so many high-end processors per system.

... but people don’t buy computers, they buy problem solutions (i.e. applications+computers to run them).

Hence if we want a healthy HPC industry, we need a rich set of cluster-enabled applications.

The academic/national lab shares this need with industry.

Industrial HPC use translates into better products and more funding.

So where is the cluster software?

Except for a few CFD codes, crash codes, a handful of bioinformatics and chemistry codes, and a smattering of other codes, there aren’t many ISV supported cluster enabled codes.

Most ISV’s have ignored parallel computing.

Why is this the case?

*ISV = Independent Software Vendor *CFD = Computational Fluid Dynamics
In the late 80's, we thought portable programming environments were the solution. And the ISV’s laughed at us. “Too many” options don’t help.

In the mid-90's, standard API’s were the solution. So we finally agreed on a small set of API’s...

- Thread Libraries
 - Win32 API
 - POSIX threads.
- Compiler Directives
 - OpenMP - portable shared memory parallelism.
- Message Passing Libraries
 - MPI - message passing

We picked up a few more ISV’s, but most ignored us.
What’s missing?

A standard API isn’t enough … ISV’s need a standard platform to build their business upon.

… and the platform must be easy for the general user to use.

Cluster Computing Platforms

- A Platform is the API’s, tools, interfaces, and everything else required to install, maintain and use a computing system.
 It includes:
 - Sys admin tools
 - Installers
 - “Parallel unix tools”
 - Libraries
 - Batch queue
 - Scheduler
 - Performance monitoring
 - Debugging
So we all ran off and created cluster platforms

Beowulf “how to” Linux Networx
Extreme Linux
Alinka NPACI-Rocks
Score SE

... and countless proprietary and home-brewed platforms.

Are we at risk of scaring away the ISV’s (just as we did with API-glut in the early 90’s)?

*Brands and names are property of their respective owners.

My hope is ...

- To see a small number (on the order of two) common base platforms emerge.
 - Look very similar to end-users.
 - “Vendors” distinguish themselves with “value added instantiations”, not new interfaces.

- To try and make this happen, a group of us came together as “The Open Cluster Group”.

The OSCAR Solution Stack for Cluster Computing
The OSCAR Solution Stack for Cluster Computing

Agenda

- Cluster Computing Software Stacks
 - What they are and why we desperately need a common base software stack.
- OSCAR and the Open Cluster Group
- OSCAR Today
- OSCAR Tomorrow
- Cluster Computing Standards

Cluster Software stacks

The Open Cluster Group

- We are an open group dedicated to open source solutions for cluster computing.
 - Dell, IBM, Intel, LLNL, MSC.software, NCSA, ORNL, SGI, Indiana University and others.
- Our first project is OSCAR
 - Open Source Cluster Application Resources

Follow our progress at:
http://www.openclustergroup.org

*Brands and names are property of their respective owners.

The OSCAR Solution Stack for Cluster Computing
Cluster Software stacks

OSCAR top Level Strategy

- OSCAR is a snap-shot of best-known-methods for building, programming and using clusters.
- OSCAR is NOT a standard!
- It will bring uniformity to clusters, foster commercial versions of OSCAR, and make clusters more broadly acceptable.

Introduction to OSCAR

OSCAR Milestones

- Public Announcement and demo release OSCAR 0.8 at SC’00 (Nov’00)
- General release OSCAR 1.0 (Mar’01)
- OSCAR 1.0 RedHat 7.1 support (August’01)
- OSCAR 1.2 Developers release (Feb’02)
- OSCAR 1.2 Developers release (Feb’02)
- OSCAR 2 architecture meeting (April’01)
- OSCAR 2 planned release (Q3’02)

Brands and names are property of their respective owners.
OSCAR: How are we doing?

- **OSCAR is doing great:**
 - “We’re number 1”.
 - Over 16,000 downloads in 2001.
 - 35% in a recent poll on www.cluster.top500.org
 - Lively on-line user group – starting to answer questions before we can get to them!
 - OSCAR has brought many new people into clustering

- **OSCAR is not doing very well:**
 - Maintenance mode still not enabled.
 - Poor support for adding/deleting nodes.
 - Too hard to adjust to new releases from RedHat.
 - OSCAR is still way too complicated.

None of us are satisfied. OSCAR isn’t ready for the production oriented “commercial world”

(I send such people to Scyld or MSC.software).

Agenda

- Cluster Computing Software Stacks
 - What they are and why we desperately need a common base software stack.
- OSCAR and the Open Cluster Group
 - OSCAR Today
 - OSCAR Tomorrow
The OSCAR Solution Stack for Cluster Computing

OSCAR Basics

- **Version 1.0, 1.1**
 - LUI = Linux Utility for cluster Install
 - Network boots nodes via PXE or floppy
 - Nodes install themselves from rpms over NFS from the server
 - Post installation configuration of nodes and server executes

- **Version 1.2+**
 - SIS = System Installation Suite
 - System Imager + LUI = SIS
 - Creates image of node filesystem locally on server
 - Network boots nodes via PXE or floppy
 - Nodes synchronize themselves with server via rsync
 - Post installation configuration of nodes and server executes

OSCAR Contents/Status

<table>
<thead>
<tr>
<th>OS Layer</th>
<th>OSCAR 1.0: RedHat 6.2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OSCAR 1.2: RedHat 7.2</td>
</tr>
<tr>
<td>Installation & System Configuration</td>
<td>OSCAR 1.0, 1.1: LUI</td>
</tr>
<tr>
<td></td>
<td>OSCAR 1.2 and on: SIS</td>
</tr>
<tr>
<td>Security</td>
<td>OpenSSH / OpenSSL</td>
</tr>
<tr>
<td>System Services & Cluster Management</td>
<td>C3</td>
</tr>
<tr>
<td>Job Management</td>
<td>PBS, Maui scheduler.</td>
</tr>
<tr>
<td>Programming Environment</td>
<td>gcc, PVM, MPIch and LAM-MPI</td>
</tr>
<tr>
<td>Packaging</td>
<td>Components integrated and auto-installed. Documentation.</td>
</tr>
</tbody>
</table>

Brands and names are property of their respective owners.
Hardware Considerations

- Server & Clients
 - Must be IA32 systems – IA64 in pre-beta.
 - Must be connected by an Ethernet network (preferably a private one)
- Clients
 - Should contain identical hardware
 - PXE Enabled NIC or Floppy Drive

Installation Overview

- Install RedHat 7.2
- Download OSCAR
- Copy RPMS to server
- Run wizard
 - Build image per client type (partition layout, HD type)
 - Define clients (network info, image binding)
 - Setup networking (collect MAC addresses, configure DHCP, build boot floppy)
 - Boot clients / build
 - Complete setup (post install)
 - Install test suite
The OSCAR Solution Stack for Cluster Computing

Agenda

- Cluster Computing Software Stacks
 - What they are and why we desperately need a common base software stack.
- OSCAR and the Open Cluster Group
- OSCAR Today
- OSCAR Tomorrow
- Cluster Computing Standards

What OSCAR needs

- Movement away from a reliance on RedHat.
- Greatly improved ease of use – a better wizard, more automation.
- Support for huge clusters.
- Tools to support cluster maintenance:
 - Adding and deleting nodes.
 - Adding and deleting software packages.
The OSCAR Solution Stack for Cluster Computing

OSCAR 2.0 Architecture

- **Sys Admin, Programmers, Users**
- **ODR:** OSCAR Data Repository
- **OSCAR Core packages (C3, WebMin, scripts)**
- **SIS – System installation Suite**
- **OSCAR Component Packages**
- **The Cluster:** Hardware, netowrk, OS, etc
- **Gold Images**

1.2 released Feb/02
2.0 planned for Fall’02

OSCAR 2: Key changes

- **New OSCAR Wizard based on webmin**
 - Installation modes
 - Simple – Standard – Expert
- **OSCAR & OS install separate**
- **Maintenance modes**
 - Node: add – delete – update – reinstall
 - Package: add – delete
 - Configuration report
OSCAR component packages

- OSCAR consists of a set of components built around a core OSCAR infrastructure.
- OSCAR Data Repository (ODR)
 - read – by anyone
 - write – by OSCAR wizard only
- We will publish the interfaces required to turn a software package into an OSCAR component package.
 - Add/delete package to a node/system.
 - Modify package configuration for add/delete nodes.

An OSCAR Packages API will enable a community of HPC software developers to spring up around OSCAR.

OSCAR 2 – Security Options

- Wizard based
 - Security options selected in wizard installer
- Security schemes
 - All Open
 - Nodes isolated to private subnet
 - Cluster firewall / NAT
 - Independent packet filtering per node
- Probably will use “pfilter”
 http://pfilter.sourceforge.net/
OSCAR Development Path

- version 1.0
 - Redhat 6.2 based
 - Nodes built by LUI (IBM)
 - Proof of concept (prototype)
 - Many steps, sensitive to bad input
 - Flexibility was intention; identify user needs

- version 1.1
 - Redhat 7.1 based
 - Nodes built by LUI
 - More automation for homogenous clusters
 - SSH: user keys instead of host keys
 - Scalability enhancements (ssh, PBS)
 - Latest software versions

- version 1.2
 - moved development to SourceForge www.sourceforge.net
 - LUI replaced by SIS
 - Redhat 7.1 based
 - Packages adjust to SIS based model
 - Latest software versions (C3 tools, PBS, MPICH)
 - Start releasing monthly

- version 1.21 (1.3 beta?)
 - Redhat 7.2 support

- version 1.3
 - Add/Delete node support implemented
 - Security configuration on head node
 - ia64 support
OSCAR Development Path (cont.)

- **version 1.4**
 - Grouping support (nodes)
 - GUI replacement: Webmin (command line backend)
 - Core packages read/write configuration to database
 - SSH, C3, SIS, Wizard
 - Package DB API published
 - modular package support

- **version 1.5**
 - Existing packages use database
 - PBS, MPICH, PVM, LAM, Maui

OSCAR Development Path (cont.)

- **version 1.6 (2.0 beta?)**
 - custom security configuration for compute nodes
 - single head node model expires
 - head node holds OSCAR database
 - packages can designate their own head node (e.g. PBS)
 - package writing opened to community
 - the modularity advantage
 - “open packages” and “certified packages”
 - commercial packages can now be offered
 - licensing issues disappear
 - compatibility with other packagers (hopefully)
The OSCAR Solution Stack for Cluster Computing

Agenda

- Cluster Computing Software Stacks
 - What they are and why we desperately need a common base software stack.
- OSCAR and the Open Cluster Group
- OSCAR Today
- OSCAR Tomorrow
- Cluster Computing Standards

Cluster Computing Platforms

- In an ideal world ...
 - There would be two base cluster computing platforms:
 - Symmetric Clusters (AKA traditional Beowulf)
 - Single System Image Clusters
 - Different groups would use one of these 2 base platforms and extend them to meet their needs.
- But in the real world ...
 - Everyone wants their own platform.

HPC research groups seeking funding win with multiple platforms.

Vendors, end users, and ISV suffer due to a lack of commonality.
Cluster Computing Standards

- If we can’t share base cluster computing platforms, let’s at least share:
 - Interfaces for defining cluster-enabled software packages
 - File system organization – an application shouldn’t have to figure out where MPI is on each different cluster
 - Data base API for cluster configuration information.

The goal should be to make cluster look the same to end users and ISV’s.

Cluster Computing Standards

- Cluster Computing standards options:
 - Global Grid Forum
 - This would work, but it might be too slow and cumbersome.
 - Ignore everyone else and one of us does such a good job, a de facto standard emerges
 - This is what will hopefully happen if we can’t get cluster computing groups to collaborate.
 - The major two or three players just make it happen
 - What if the OpenClusterGroup, PCCC and Scyld just agreed on a standard? That’s more than 60% of the market. Everyone else would have to follow.
Summary

- Software drives the HPC market.
- For HPC clusters to make it for commercial, numerically intensive computing; we need a common robust cluster Platform.
- Industry, academic and national-lab HPC professionals MUST work together to make this happen: