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量子機械学習の理論的進展とAIへの展望
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講演の概要（1）

量子機械学習 = 入力データの学習を量子モデルで行う機械学習

古典データを入力とする効率的な量子学習モデルを作るために

1）量子学習モデルの訓練可能性、汎化性の理解
2）問題に応じた量子ニューラルネットワークモデルの設計

訓練古典データ

結果

テスト古典データ

量子計算機で推論量子モデルで学習
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量子回路からの出力に対するHPC活用の可能性を考えてみる

講演の概要（2）

3）量子コンピュータで基底状態を探索 ＋ HPCでエネルギーを推定

量子コンピュータ HPC

量子状態のサンプリング ハミルトニアンの対角化
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量子コンピュータでの期待値計算を古典学習モデルで学習する

一般的な量子回路の期待値に対する古典学習は、通常大きなコストがかかる

4）有界ゲート量子回路の期待値計算に対するHPC古典学習の可能性

講演の概要（3）

現実的な有界ゲートからなる量子回路に対しては、効率的な古典学習も可能

訓練量子回路の出力

結果

テスト量子回路の出力

古典計算機で推論古典モデルで学習

量子回路からの出力に対するHPC活用の可能性を考えてみる
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‣ 量子コンピュータの入力状態 を準備 

‣ 学習パラメータ を持つユニタリー を適用し、 を生成
‣ 観測量 の期待値を計算し、損失関数 を決定
‣ 古典計算で損失関数を最小化し、学習パラメータ を最適化

ρ
θ U(θ) ρ(θ) = U(θ)ρU(θ)†

O C(θ) = Tr [Oρ(θ)]
θ

最適化にかかるリソースのため、一般的に
大きな問題への適用が難しい

最適化ループ

量子 古典

量子学習モデル
変分量子回路を用いた量子学習モデル

変分量子固有値ソルバー（VQE）など
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(b > 1)

一般的なローカルユニタリーからなる（構造のない）量子学習モデルは、
系のサイズとともに訓練が困難になる  — “次元の呪い” 問題 —

Nqubits

C(θ)

バレンプラトー（勾配消失）問題

損失関数
C(θ) = Tr[OU(θ)ρU†(θ)]

McClean et al., Nat. Commun. 9, 4812 (2018)

コスト関数あるいはその勾配が
一定値に指数的に集中する

Vθ∼uniform [C(θ) or ∂C(θ)
∂θi ] = 𝒪(b−n)

量子学習モデルでの勾配消失問題

https://www.nature.com/articles/s41467-018-07090-4
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Cerezo et al.,  
Nat. Commun. 12, 1791 (2021)
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量子学習モデルの学習性能をいかに向上させるか
‣ 学習モデルの表現能力は学習
パラメータ数とともに向上
‣ 回路が深くなると、勾配消失
が起こりうる

量子学習モデルの訓練可能性

Larocca et al.,  
Nat. Computat. Sci. 3, 542 (2023) 

学習パラメータ数がある閾値を越えると、学習性能が
非連続的に向上する場合がある
  → 過剰パラメータ現象

局所解を回避

学習の収束性の向上

Nature Computational Science | Volume 3 | June 2023 | 542–551 546

Article https://doi.org/10.1038/s43588-023-00467-6

overparametrized QNN. Here we see that, for small noise levels, the 
magnitude of the new eigenvalues is very small compared to that of the 
previously non-zero ones, leading to a regime of quasi-overparametri-
zation. Our second finding is that as the noise magnitude increases, 

the overall magnitude of the eigenvalues of the QFIM is exponentially 
suppressed with the noise level, indicating that the state becomes more 
and more insensitive to parameter changes. This provides a connection 
between our results and the phenomenon of noise-induced barren 
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Fig. 3 | Training curves for VQE implementation L. Loss-function value minus 
the exact ground-state energy (Egs) plotted versus iteration. a–d, A Hamiltonian 
variational ansatz with open (left) and closed (right) boundary conditions was 

used to solve the VQE task in equation (14) for n = 4 (a), n = 6 (b), n = 8 (c) and 
n = 10 (d) qubits. Solid lines represent the average over 50 random initialized 
runs, and the shaded regions correspond to the standard deviation.
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the exact ground-state energy (Egs) plotted versus iteration. a–d, A Hamiltonian 
variational ansatz with open (left) and closed (right) boundary conditions was 

used to solve the VQE task in equation (14) for n = 4 (a), n = 6 (b), n = 8 (c) and 
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VQEでの基底エネルギー探索
‣ 縦横磁場イジング模型
（ ）
‣ Hardware-Efficient アンザッツ
‣ 逐次最小問題最適化法（NFT）
によるパラメータの最適化

3 ≤ N ≤ 10

勾配消失と過剰パラメータ
横河電機（中林暁男氏、橋本凌氏）との共同研究として、勾配消失と
過剰パラメータの包括的な数値実験を行った

相対エネルギー誤差 を、量子ビット
数 、パラメータ数（レイヤー数 ）、
更新回数 を変えて数値検証した

E
N L

t 論文を準備中

Nakanishi, Fujii, Todo,   
Phys. Rev. Res. 2, 043158 (2020)

https://doi.org/10.1103/PhysRevResearch.2.043158


〇　
✕ 勾配の数値計算

QFIM計算
HEAの動的Lie代数
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勾配消失と過剰パラメータ

表現能力が小さく収束性は悪い

勾配消失による の悪化

過剰パラメータによる
指数的収束

E

小L

大L

エネルギー誤差 の -依存性：E L

QFIM計算と無矛盾

エネルギー誤差 の -依存性：E t

HEAの動的Lie代数
と無矛盾

‣ 過剰パラメータ領域での指数的収束を確認
‣ パラメータ数に対する非単調な収束を観測
実問題に対して、量子回路が勾配消失や過剰パラメ
ータを起こす領域へ遷移する時の振る舞いを検証
理論に立脚した量子回路設計の指針

Larocca et al. 
(2023) 

https://www.nature.com/articles/s43588-023-00467-6
https://www.nature.com/articles/s43588-023-00467-6
https://www.nature.com/articles/s43588-023-00467-6
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 3. Settings: Ridge Quantum Kernel Regression

Interpolation閾値

 4. Result: Test error (Theory and numerics)
Deterministic Equivalent of Sample Covariance Matrix:

DeterministicOver-parameterizedUnder-parameterized

Fig.1
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‣ 学習モデルのパラメータ数がデータ量
と同等になると、オーバーフィッティン
グによって汎化性は下がる
‣ 過剰パラメータ領域に入ると、汎化性
の非連続的な改善が見られる

二重降下現象

学習モデルの汎化性（  学習に用いていないデータに対する予測性能）は
性能評価の重要な指標

機械学習の汎化性

量子学習でも二重降下は起こるか？
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Cf.  正規化項なしの量子カーネル回帰, M. Kempkes et al., arXiv:2501.10077

テストエラー：Rλ,Σ̂ = 𝔼ϵtr
𝔼(xts, yts) [(yts − α̂ ⋅ ϕ(xts))2]

O = ∑
i

αiρ(xi)

リッジ損失関数：R̂ = 1
n

∥ ytr − Xtrα ∥2
2 + λ ∥ α ∥2

2

量子カーネルリッジ回帰での二重降下の研究を進めている
‣ ノイズ 付き学習サンプル：
入力データ  （リプシッツ関数 ）

‣ 量子カーネルモデル：  

ϵtr ytr = Xtrα* + ϵtr

Xtr = (ϕ(x1), ⋯, ϕ(xn))T ∈ ℝn×d ϕ(x)

f(x) = Tr[ρ(x)O] = α ⋅ ϕ(x)

正規化項の大きさとともに汎化性がどう変わるか

量子カーネル回帰タスクでの汎化性

上曽山健介 
（博士課程2年）

https://arxiv.org/abs/2501.10077


Double Descent in Ridge Quantum Kernel Methods
Kensuke Kamisoyama, Lento Nagano,  Koji Terashi

Understanding generalization is one of the central challenges in machine learning. The double descent phenomenon 
describes a non-monotonic relationship between model capacity and test error: error follows the classical U-shaped bias–
variance curve, spikes near the interpolation threshold (where models perfectly fit training data), and then decreases again in 
the over-parameterized regime (Fig.2). While double descent is increasingly understood in classical settings, its quantum 
manifestation is still largely unexplored. Prior theory for ridgeless quantum kernel methods (QKM) revealed a sharp peak at 
interpolation, but ignored explicit regularization used in practice. We develop a rigorous framework that maps ridge QKM to a 
high-dimensional Lipschitz ridge regression problem and apply random matrix theory to derive a closed-form expression for 
test risk. Our formula describes test risk across the parameterization spectrum and shows how increasing regularization 
progressively smooths and suppresses the double-descent peak, providing a tunable tool to mitigate overfitting in QKM.

 5. Summary
•We extend prior observations on test risk for ridgeless case into a 
theoretical and quantitative framework for ridge QKM case, 
deriving a closed-form risk formula that explains how the 
interpolation peak is suppressed as the regularization coefficient 
increases.

•Validation: Numerical experiments validate our analytic test-risk 
expression and reproduce the interpolation peak for all 
regularization values, even at modest model sizes.

•Future work: rigorous analysis of test risk in variational quantum 
machine learning (VQML).

 4. Result: Test error (Theory and numerics)

• Quantum kernel ridgeless regression ( )

• Numerical evidence of double descent

λ = 0

Simulation 
(Theory & Numerics)

Deterministic Equivalent of Sample Covariance Matrix:

Rλ,Σ̂ = − ∂
∂J

Tr[PJ Qλ
J PJ α*αT

* ]
J = 0

+ ∂
∂λ

Tr[ΣQλ] + σ2

≍ − ∂
∂J

Tr[PJ Q̃λ
J PJ α*αT

* ]
J = 0

+ ∂
∂λ

Tr[ΣQ̃λ] + σ2

Qz := (Σ̂ + zIp)
−1

≍ Q̃z := ( Σ
1 + δ′ 

+ zIp)
−1

, δ′ = 1
n

Tr [Σ ( Σ
1 + δ′ 

+ zIp)
−1

]
Deterministic equivalent of Test risk:

 0. Abstract

MNIST

Synthetic dataPJ:= (I + JΣ)−1/2

Qz
J:= (Ip − PJΣ̂PJ)−1

Q̃z
J:= (Ip − PJΣPJ)−1

•Conventional statistical learning theory predicts a bias–
variance trade-off but does not explain why test error 
can decrease in the over-parameterized regime.

•Various classical over-parameterized models work well.

•Test error shows double descent.

•Random matrix theory is used to reproduce the peak 
behavior.

 1. Intro: Double Descent
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Fitting degree  Legendre polynomials (orange curve) to  
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p n = 20

Fig.2
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arXiv:2501.10077 

 2. Double Descent in Quantum Kernel Methods

 3. Settings: Ridge Quantum Kernel Regression

• Ridge loss:  + 


• Analyze Test risk: 

R̂ = 1
n

∥ytr − Xtrα∥2
2 λ∥α∥2

2

Rλ,Σ̂ = 𝔼εtr
𝔼(xts,yts) [(yts − α̂ ⋅ ϕ(xts))2]

Training samples:

   (  )ytr = Xtrα* + εtr Xtr = (ϕ(x1), …, ϕ(xn))T ∈ ℝn×d

N(0,I) ∼ zi ⟶ Lipschitz functions ⟶ xi (data)
Input data generation: 

Quantum Kernel model: 

Assumption on input-output relation: 
   (  is a Lipschitz function)y = α* ⋅ ϕ(x) + ε ϕ(x)

f(x):= Tr[ρ(x)O] = α ⋅ ϕ(x), where O = Σi αiρ(xi)

Σ̂:= XtrXT
tr /n

Σ:= 𝔼[XtrXT
tr /n]

Fig.3

Fig.4
MNISTデータ

Preliminary
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ランダム行列理論を用いた、テストエラー の決定論的同値の評価Rλ,Σ̂

QTML 2025 poster 
(Singapore)

Interpolation閾値で
のピークの大きさは
正規化項に依存する

解析結果を数値
計算と比較

サンプル数   特徴量次元 ： , , n p n → ∞ p → ∞ p/n = γ

量子カーネル回帰タスクでの汎化性
量子カーネルリッジ回帰での二重降下の研究を進めている
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そのような回路が張る空間は、ヒルベルト空間全体ではなく
対称性を保つ部分空間に限定される

Li, Nagano, Terashi, Phys. Rev. Res. 6, 043028 (2024)

勾配消失の影響を受けにくい量子回路として、問題が持つ性質
（例えば対称性）を取り入れた回路設計は一つの指針

回転対称性と順不同性を効率的に扱うことができる
量子ニューラルネットワークモデルを提案

対称性を持つ量子学習モデル

Z. Li 
（→ 民間企業）

勾配消失を起こさず、非常に少ない学習パラメータで
高い識別性能を持つ学習モデルを実現

https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.6.043028
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HPCを活用した量子・古典ハイブリッドは有望な計算リソース
HPCを用いた量子・古典ハイブリッド計算
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HPCを活用した量子・古典ハイブリッドは有望な計算リソース

Quantum-Selected Configuration Interaction　Kanno et. al, arXiv:2302.11320
Sample-based Quantum Diagnonalization　　 Robledo-Moreno et. al, Sci. Adv. 11, 25 adu9991 (2025) 

ibm_marrakesh + 富岳 (2025) → 古典手法 (CISD) を計算精度で上回った

‣ 量子コンピュータでの基底状態の探索
‣ HPCを用いて、ハミルトニアンを対角化・エネルギーを推定

富岳ibm_marrakesh

+

量子化学への応用 鉄硫黄クラスターの基底エネルギー計算

156量子ビット 
Heron r2

152,064ノード

HPCを用いた量子・古典ハイブリッド計算

Shirakawa et. al, 
arXiv:2511.00224

https://arxiv.org/abs/2302.11320
https://doi.org/10.1126/sciadv.adu9991
https://arxiv.org/abs/2511.00224v1
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HPCを用いた量子・古典ハイブリッド計算

Miyabiibm_kawasaki

+
東京大学、筑波大学

最先端共同HPC基盤施設
IBM

高エネルギー物理への応用

156量子ビット 
Heron r2

Miyabi-G: CPU+GPU
NVIDIA GH200 Grace-Hopper 

Superchip（1,120ノード）

格子ゲージ理論の基底エネルギー計算
HPCを活用した量子・古典ハイブリッドは有望な計算リソース
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Iiyama, Nagano, Terashi (UTokyo), Hayata (Keio),

Kawashima, Kirby, Motta, Pascuzzi, Mezzacapo (IBM)

クリロフ部分空間の探索

クリロフ部分空間での基底状態

を満たす状態  の元で、
時間ステップ 、 に対して 

 

⟨Ω |ψ0⟩ ≠ 0 |ψ0⟩
Δt U = e−iHΔt

|Ω⟩ ∈ lim
D→∞

span{Un |ψ0⟩}D
n=0

2次元 格子ゲージ理論の基底状態シミュレーションℤ2

クリロフ部分空間で基底状態を表現し、そのサンプリングを
元にハミルトニアンを対角化

Sample-based diagonalization

Steps 
• Prepare an approximate ground state 

(via variational method etc.) 
• Sample the state 
• Configuration recovery 
• Projection & diagonalization

3

If ( ) = Ẽ0then

where Ẽ0 ≳ E0

Robledo-Moreno et al., Sci. Adv. 11, eadu9991 (2025)     18 June 2025
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Our main goal is to !nd the ground state of chemistry Hamiltonians

expanded over a discrete basis set. Here, we have de!ned the fermi-
onic creation/annihilation operator â†pσ ∕ âpσ associated to the p- th 
basis set element and the spin σ , whereas hpr and 

(
pr∣qs

)
 are the one-  

and two- body electronic integrals, obtained from standard chemis-
try so"ware (22). #roughout this manuscript, we use molecular 
orbitals as basis set elements. We map the degrees of freedom of 
Eq. 1 to qubits with a Jordan- Wigner (JW) transformation (23). We 
then construct a quantum circuit to be executed on quantum hard-
ware, preparing a state ∣Ψ⟩ on M qubits, which represents a molecu-
lar wave function on M molecular spin- orbitals. In the JW mapping, 
the single- qubit basis states ∣0⟩∕∣1⟩ represent empty/occupied spin- 
orbitals. #ese mapping and optimization steps are performed on 
classical nodes (see Fig. 1). We execute the circuit on a quantum com-
puter and measure ∣Ψ⟩ in the computational basis. Repeating this 
produces a set of measurement outcomes

in the form of bitstrings x ∈ {0, 1}M distributed according to some 
P̃Ψ ; the bitstrings represent electronic con!gurations, also referred 
to as Slater determinants (SDs).

Con!guration recovery
On a prefault- tolerant quantum computer, the action of noise alters 
the distribution from its ideal form PΨ = ∣⟨x∣Ψ⟩∣2 to some other 
P̃Ψ , which generates the noisy set of con!gurations ̃ , accessible to 
us via quantum measurement. Noise in the quantum system broad-
ens the distribution PΨ over con!gurations that do not contribute to 
low- energy states, so- called deadwood (24). As a result, only a frac-
tion of ̃ contains a meaningful quantum signal. To improve this 
scenario, we introduce a self- consistent con!guration recovery tech-
nique, which allows a probabilistic partial recovery of noiseless con-
!guration samples from ̃.

#e con!guration recovery scheme is inspired by the structure of 
chemistry problems. #e Hamiltonian in Eq. 1 conserves the num-
ber of particles separately for each spin species. #e recovery routine 
targets con!gurations x that have the wrong particle number Nx ≠ N 
due to the accumulation of errors in the execution of the quantum 
circuit.

Repeated rounds of recovery can be carried out self- consistently. 
#e !rst step of each recovery round is to iterate through the set ̃ and !nd con!gurations x with Nx ≠ N particles. If Nx > N (or 
Nx < N ), ∣Nx − N ∣ bits are sampled to be %ipped from the set of oc-
cupied (or empty) spin- orbitals, according to a distribution propor-
tional to a monotonically increasing function (see Materials and 
Methods section for further information) of ∣xpσ − npσ∣ , the dis-
tance from the current value of the bit to the average occupancy of 
the spin- orbital pσ , obtained from the previous recovery round. 
#is generates a new set of recovered con!gurations R.

Following the next step of Fig. 1, we build K  batches of d con-
!gurations  (1) … , (K) using samples from the set R , according 

Ĥ =
∑

pr

σ

hpr â†pσârσ +
∑

prqs

στ

(
pr ∣qs

)

2
â†pσâ

†
qτâsτârσ

(1)

̃ = {x∣x ∼ P̃Ψ(x)} (2)

Fig. 1. Quantum- centric supercomputing architecture and SQD work"ow diagram. (Left) We illustrate a simpli!ed architecture used to execute our work"ow. The 
architecture has a cluster with a quantum system alongside classical runtime nodes within an isolated environment. A workload management system controls hybrid 
quantum- classical jobs through middleware. Our work"ow is distributed on a set of classical nodes. It includes standard quantum chemistry application routines such as 
computing electronic integrals, mapping to qubits, and preparing circuits to be executed. (Right) Details of the classical postprocessing step. The input is a set of noisy 
samples ̃ from the quantum execution that are processed with our con!guration recovery step, using information from a vector n of reference orbital occupancies. The 
green inset shows an example where a con!guration with Nx < N is corrected. The set of recovered con!gurations R is subsampled and distributed for projection and 
diagonalization on parallel classical nodes. A new average reference occupancy vector n is computed from the results, and the con!guration recovery loop is repeated 
self- consistently until convergence.
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basis set element and the spin σ , whereas hpr and 

(
pr∣qs

)
 are the one-  

and two- body electronic integrals, obtained from standard chemis-
try so"ware (22). #roughout this manuscript, we use molecular 
orbitals as basis set elements. We map the degrees of freedom of 
Eq. 1 to qubits with a Jordan- Wigner (JW) transformation (23). We 
then construct a quantum circuit to be executed on quantum hard-
ware, preparing a state ∣Ψ⟩ on M qubits, which represents a molecu-
lar wave function on M molecular spin- orbitals. In the JW mapping, 
the single- qubit basis states ∣0⟩∕∣1⟩ represent empty/occupied spin- 
orbitals. #ese mapping and optimization steps are performed on 
classical nodes (see Fig. 1). We execute the circuit on a quantum com-
puter and measure ∣Ψ⟩ in the computational basis. Repeating this 
produces a set of measurement outcomes

in the form of bitstrings x ∈ {0, 1}M distributed according to some 
P̃Ψ ; the bitstrings represent electronic con!gurations, also referred 
to as Slater determinants (SDs).

Con!guration recovery
On a prefault- tolerant quantum computer, the action of noise alters 
the distribution from its ideal form PΨ = ∣⟨x∣Ψ⟩∣2 to some other 
P̃Ψ , which generates the noisy set of con!gurations ̃ , accessible to 
us via quantum measurement. Noise in the quantum system broad-
ens the distribution PΨ over con!gurations that do not contribute to 
low- energy states, so- called deadwood (24). As a result, only a frac-
tion of ̃ contains a meaningful quantum signal. To improve this 
scenario, we introduce a self- consistent con!guration recovery tech-
nique, which allows a probabilistic partial recovery of noiseless con-
!guration samples from ̃.

#e con!guration recovery scheme is inspired by the structure of 
chemistry problems. #e Hamiltonian in Eq. 1 conserves the num-
ber of particles separately for each spin species. #e recovery routine 
targets con!gurations x that have the wrong particle number Nx ≠ N 
due to the accumulation of errors in the execution of the quantum 
circuit.

Repeated rounds of recovery can be carried out self- consistently. 
#e !rst step of each recovery round is to iterate through the set ̃ and !nd con!gurations x with Nx ≠ N particles. If Nx > N (or 
Nx < N ), ∣Nx − N ∣ bits are sampled to be %ipped from the set of oc-
cupied (or empty) spin- orbitals, according to a distribution propor-
tional to a monotonically increasing function (see Materials and 
Methods section for further information) of ∣xpσ − npσ∣ , the dis-
tance from the current value of the bit to the average occupancy of 
the spin- orbital pσ , obtained from the previous recovery round. 
#is generates a new set of recovered con!gurations R.

Following the next step of Fig. 1, we build K  batches of d con-
!gurations  (1) … , (K) using samples from the set R , according 

Ĥ =
∑

pr

σ

hpr â†pσârσ +
∑

prqs

στ

(
pr ∣qs

)

2
â†pσâ

†
qτâsτârσ

(1)

̃ = {x∣x ∼ P̃Ψ(x)} (2)

Fig. 1. Quantum- centric supercomputing architecture and SQD work"ow diagram. (Left) We illustrate a simpli!ed architecture used to execute our work"ow. The 
architecture has a cluster with a quantum system alongside classical runtime nodes within an isolated environment. A workload management system controls hybrid 
quantum- classical jobs through middleware. Our work"ow is distributed on a set of classical nodes. It includes standard quantum chemistry application routines such as 
computing electronic integrals, mapping to qubits, and preparing circuits to be executed. (Right) Details of the classical postprocessing step. The input is a set of noisy 
samples ̃ from the quantum execution that are processed with our con!guration recovery step, using information from a vector n of reference orbital occupancies. The 
green inset shows an example where a con!guration with Nx < N is corrected. The set of recovered con!gurations R is subsampled and distributed for projection and 
diagonalization on parallel classical nodes. A new average reference occupancy vector n is computed from the results, and the con!guration recovery loop is repeated 
self- consistently until convergence.
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サンプリングベースの対角化

‣疎な基底をサン
プリング 

‣ハミルトニアン
をビット列に射
影し、対角化Ẽ0 > E0∼

飯山悠太郎 永野廉人

格子ゲージ理論の量子シミュレーション



Triangular pure  LGT ❤ heavy hexΩ2
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ibm_kawasaki (Heron r2 - 156 qubits)

“Here we consider a U(1) quantum link model on a triangular lattice, ... 
that ideally matches the heavy hexagonal topology of the Eagle chip.”

cf.

Cobos et al. arXiv:2507.08088
also

Plaquette qubits = ancillae

3

in these precursors to rotational dynamics and Regge tra-
jectories of meson-like composites. Going beyond a single
string, we demonstrate how multi-string configurations
can fragment and reorganize in a heavy-massive regime,
distinct from conventional string breaking via particle-
antiparticle creation. Our observations, validated by ten-
sor network simulations, provide a direct bridge between
the theoretical constructs of e!ective string-like models
and tangible, dynamic observables, opening a new fron-
tier for probing the non-perturbative physics of gauge
theories. Moreover, the methods developed and the
lessons learned are broadly applicable to quantum simu-
lations beyond the specific model studied in this work.

II. THE Z2-HIGGS MODEL & STATIC
PROPERTIES

Gauge-Higgs models are central in understanding con-
finement and symmetry breaking in LGTs [11, 12]. In the
Z2 case [24, 25], paralleling the situation with other gauge
groups, the Higgs and confined phases are not separated
by a sharp phase transition but are instead smoothly con-
nected. In the square lattice, which has also proven to
be foundational in condensed matter [26], the deconfined
phase underlies the topological order in some types of
quantum spin liquids [27], while charge or flux condensa-
tion leads to the confined and Higgs phases, respectively.

We adapt the Z2HM to a particular hardware, IBM
superconducting chips with heavy-hexagonal connectiv-
ity, used to minimize frequency collisions for high-fidelity
gates [28, 29]. The model hereby realized is a LGT with
Pauli matter and gauge fields with a Hamiltonian,

H = →m
∑

n

ωzn→g
∑

(n,v)

εz

(n,v)→ϑ
∑

n,v

ωxn+vε
x

(n,v)ω
x

n. (1)

Here, ω , ε are Pauli operators defined in a constrained
tensor-product Hilbert space, n denotes the sites of the
hexagonal lattice, while v stands for the unit lattice vec-
tors; in the basis where ωz, εz are diagonal, we de-
fine their eigenvectors by ωz|0↑ = |0↑, εz|0↑ = |0↑, and
ωz|1↑ = →|1↑, εz|1↑ = →|1↑. As usual, matter fields live
on the sites and gauge fields on the links, as shown in
Fig. 1(a). The first two terms HM = m

∑
n ωzn and

HE = g
∑

n,v ε
z

(n,v), encode the local energies of mat-

ter and electric fields, while HI = ϑ
∑

n,v ω
x

n+vε
x

(n,v)ω
x

n

defines their gauge-invariant coupling.
Note that this Hamiltonian di!ers from the traditional

Kogut-Susskind Hamiltonian for LGTs [30], as magnetic
plaquette terms inducing direct fluctuations of electric
field configurations are absent. In doing this, we avoid
a considerable circuit-depth overhead in a Trotter ex-
pansion since the plaquette term would require a six-
body interaction in the heavy-hex lattice. We emphasize,
however, that this does not preclude resolving the phe-
nomenology of a deconfined phase, as dynamical matter
can tunnel along closed loops and lead to e!ective pla-
quette fluctuations, as discussed in more depth in the

following. The Z2 gauge symmetry is generated by the
operators,

Gn = ωzn
∏

v→ωn

εz

(n,v), [Gn, H] = 0 ↓n, (2)

where ϖn denotes the directions of the links connected
to site n in this trivalent lattice (see Fig. 1(a)). Since
gauge symmetries commute with the Hamiltonian, they
are constants of motion, dividing the complete Hilbert
space into sectors with di!erent eigenvalues Gn |ϱ↑ =
± |ϱ↑ . These are related to the absence (+) or presence
(→) of a static background charge at the site n. We focus
on physical states stabilized by the generators,

Gn |ϱ↑ = |ϱ↑ , (3)

which can be understood as a discrete Gauss’ law.
This model has three distinct regimes sketched in

Fig. 1(b). The Higgs regime appears for small values of
m and g, while the confined regime emerges when both
m and g are su”ciently large. Despite the absence of
a plaquette term, a deconfined phase appears at large
m and very small g. In the Higgs regime, the ground
state of the model is a highly entangled non-local su-
perposition of all the physical states in the eigenbasis of
HM and HE , which correspond to the classical configu-
rations of the matter and gauge fields. In limits m ↔ 0
or g ↔ 0, the model can be diagonalized in terms of mu-
tually commuting stabilizer operators ωxn+vε

x

(n,v)ω
x

n and

ωzn
∏

v→ωn
εz

(n,v). The ground state is non-degenerate,
and there is a finite energy gap between the ground and
first excited states.
In the confined regime, the eigenstates are close in

energy and fidelity to those of HM , HE , the ground
state approaches |000 . . . 0↑ as m or g increases, and
gauge-invariant excitations correspond to localized mat-
ter charges connected by electric field lines. The large
value of m leads to a global U(1) symmetry related to
the conservation of the total number of charges. Gauge
invariance forces the pairs of charges to be connected
by an electric field string, which has a large energetic
cost proportional to g to stretch or compress, and yields
an e!ective potential growing linearly with their relative
distance. In this phase, the mean local matter magneti-
zation takes the value ↗ωz↑ ↘ 1, as shown in Fig. 5 of the
extended data.

The confined and Higgs regimes are adiabatically con-
nected, since we find no gap closing as the microscopic
parameters are varied; see Fig. 1(b). This characteris-
tic is maintained in the thermodynamic limit for small
values of m, and it follows from the fact that the con-
fined ground state is contained in the superposition of
the Higgs ground state; thus, no energy crossings or gap
closure occur along the adiabatic path. For m = 0, the
Hamiltonian becomes the sum of commuting terms,

H = →
∑

n,v

(
g εz

(n,v) + ϑ ωxn+vε
x

(n,v)ω
x

n

)
, (4)

Collaboration: Debasish Banerjee, Anthony Gandon,
Emilie Hu!man, Gurtej Kanwar, Alessandro Mariani,
Francesco Tacchino, Ivano Tavernelli, UJW
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on a triangular lattice, which is equivalent to a dual height
model on a hexagonal lattice that ideally matches the heavy
hexagonal topology of the Eagle chip [57]. The height vari-
ables are directly embodied by individual qubits. This allows
us to study the intriguing real-time dynamics of confining
strings, which in this case also represent interfaces separat-
ing distinct nematic confined phases. In those phases lattice
rotation invariance is spontaneously broken while transla-
tion invariance remains intact (cf. [58–63]). Here we study
the confining dynamics in 2 + 1 dimensions, using near-term
quantum hardware, without taking a continuum limit.

II. MODELS AND OBSERVABLES

We consider a U(1) quantum link model on a triangular
lattice, with a two-dimensional link Hilbert space analogous
to a quantum spin 1

2 . The two link states carry electric fluxes
± 1

2 . The Hamiltonian takes the form

H =
∑

!
H! = −J

∑

!
[U! + U †

! − λ(U! + U †
!)2]. (1)

Here U! = UxyUyzUzx is an operator associated with the par-
allel transport around a triangular plaquette !. It is built from
quantum link operators Uxy connecting nearest-neighbor sites
x and y. A U(1) quantum link Uxy = S1

xy + iS2
xy = S+

xy is a
raising operator of electric flux Exy = S3

xy, constructed from
a quantum spin 1

2 , Sa
xy (a ∈ {1, 2, 3}), associated with the link

xy. The first term in the Hamiltonian inverts a closed loop of
electric flux around a triangular plaquette. It also annihilates
nonflippable plaquette states, i.e., those that do not contain
a closed flux loop. The Rokhsar-Kivelson term, proportional
to λ, counts flippable plaquettes. The Hamiltonian commutes
with the generators of infinitesimal U(1) gauge transforma-
tions, which correspond to the lattice divergence of the electric
flux operators,

Gx =
∑

i=1,2,3

(Ex,x+î − Ex−î,x ). (2)

Here î denotes unit vectors in three lattice directions separated
by 120◦ angles. In the absence of external charges, physical
states |"〉 obey the Gauss law Gx|"〉 = 0. When static exter-
nal charges Qx ∈ {±1,±2,±3} are installed at the lattice sites
x, the Gauss law is modified to Gx|"〉 = Qx|"〉. Besides the
U(1) gauge symmetry, there are several global symmetries,
including lattice translations, rotations, and reflections, and
charge conjugation C, which replaces Uxy by U †

xy and Exy by
−Exy. We consider a rhombic lattice of side length L with
periodic boundary conditions, which is equivalent to a regular
hexagon with side length L/

√
3, thus maintaining all lattice

symmetries even in a finite volume. The torus topology im-
plies an additional global U(1)2 center symmetry associated
with large gauge transformations [64]. The corresponding
superselection sectors are characterized by wrapping elec-
tric fluxes F1 = E2 − E3, F2 = E3 − E1, and F3 = E1 − E2,
where Ei = 1

L

∑
x Ex,x+î ∈ Z/2. The Fi ∈ Z commute with

the Hamiltonian, but cannot be expressed through small pe-
riodic gauge transformations Gx. It should be noted that the
three Fi are not independent because F1 + F2 + F3 = 0.

It is natural to introduce dual degrees of freedom: quan-
tum height variables which are associated with the hexagonal
lattice that is dual to the original triangular lattice. The dual
hexagonal lattice is bipartite and consists of two sublattices A
and B. The height variables on sublattice A are associated with
the center x̃ of an original triangle and take values hA

x̃ ∈ {0, 1},
while the height variables on sublattice B take the half-integer
values hB

x̃ ∈ {− 1
2 , 1

2 }. A configuration of height variables is
associated with a flux configuration

Ex,x+î =
(
hA

x̃ − hB
x̃′
)
mod2 = ± 1

2 . (3)

Here x̃ = x + 1
3 (î − ĵ) and x̃′ = x + 1

3 (î − k̂), where j = (i −
1)mod3 and k = (i + 1)mod3. It should be noted that, for
a given flux configuration, the height variables are uniquely
defined only up to a global shift hX

x̃ → [hX
x̃ + 1]mod2 (X ∈

{A, B}). The introduction of the dual height variables guar-
antees that the Gauss law of the original flux variables is
automatically satisfied modulo 2. In order to impose the full
Gauss law, the height variables are subject to a corresponding
constraint. In order to define the height variables in the pres-
ence of odd charges Qx ∈ {±1,±3}, one must connect these
charges by Dirac strings running along the links of the original
triangular lattice. Across a Dirac string, one of the adjacent
height variables must be shifted by 1 modulo 2.

In order to identify the symmetry-breaking patterns in the
different phases, we introduce two order parameters

MA = 2
L2

∑

x̃∈A

(
hA

x̃ − 1
2

)
, MB = 2

L2

∑

x̃∈B

hB
x̃ , (4)

associated with the two sublattices (each with L2 plaquettes
such that MA, MB ∈ [−1, 1]). Due to the global shift ambi-
guity of the height variables, (MA, MB) and (−MA,−MB)
are physically equivalent. It is important to understand the
transformation behavior of the order parameters under the fol-
lowing symmetries: the charge conjugation C, the 60◦ rotation
O around a point on the triangular lattice, the reflection R on a
lattice axis, and the reflection R′ = RO on an axis orthogonal
to a lattice axis. The order parameters transform as

CMA = MA, CMB = −MB,

OMA = MB, OMB = −MA,

RMA = MB, RMB = MA,

R′
MA = MA, R′

MB = −MB. (5)

III. METHOD AND NUMERICAL RESULTS

It is straightforward to set up a Euclidean time path integral
for the canonical partition function Z = Tr[exp(−βH )P] (at
inverse temperature β) using the dual height variable rep-
resentation. Here the operator P, which commutes with the
Hamiltonian, imposes the Gauss law by projecting onto the
Hilbert space of physical states. We have developed an ef-
ficient quantum Monte Carlo cluster algorithm (cf. [20,65])
that operates on the height variables, one sublattice at a time.
Equal-value height variables are connected to clusters accord-
ing to rules that guarantee detailed balance. Special rules
apply in the last time slice in which the projection operator P
enforces the Gauss law. The algorithm has been implemented
in continuous Euclidean time [66].

023176-2

Banerjee et al. PRR 4

Link qubits = dynamic d.o.f.
18

H = − ∑
e∈ℰ

Z(e) − λ ∑
p∈𝒫

∏
e∈∂p

X(e)

edges plaquettes

三角格子を用いた先行研究：
‣ Cobos et al., 

arXiv:2507.08088
‣ Banarjee et al., Phys. Rev. 

Res. 4, 023176 (2022)

• our model is suitable for heavy-hex geometry 

• Suzuki-Trotter deconposition

• #(CNOT depth)=6 (indep of )Nψ
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[proposed by T. Hayata]

plaquette

vn
vertex

ancilla qubit
gauge qubit

ハミルトニアン

‣ ボソンのみのモデル
‣ 三角格子にボソンを配置

Heronの全156量子
ビットを利用

2次元三角格子での 格子ゲージ理論ℤ2

https://arxiv.org/abs/2507.08088
https://doi.org/10.1103/PhysRevResearch.4.023176
https://doi.org/10.1103/PhysRevResearch.4.023176
https://doi.org/10.1103/PhysRevResearch.4.023176
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Preliminary

MWPM only -115.92 2.84

MWPM + CRBM
(N = 3, M = 6) -117.10 1.66

DMRG -118.76 0

E0(λ = 1.0) ΔEDMRG

156量子ビットモデル、ゲージ不変セクターでの基底エネルギー測定
‣ クリロフ部分空間の状態をIBM量子コンピュータで生成
‣ サンプリング中に起こるビット反転エラーをMiyabiで補正：

• 最小重み完全マッチング（MWPM）
• ゲージ対称性（ガウス則）

以下を入力とした、条件付き制限ボル
ツマンマシン（CRBM）による生成モ
デルで補正
‣ ガウス則演算子のシンドローム測定
‣ ノイズエラー評価用回路の測定 論文を準備中

基底エネルギー測定の結果
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AIへの展望：量子回路の線形特性に対する古典学習

有限個の ゲートとクリフォードゲートからなる有界ゲート量子回路RZ(θ)
一般的な量子状態のダイナミクスを古典計算で完全に把握することは困難

量子回路の線形特性（期待値）を測定データから効率的に古典学習できるか？
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‣ 古典シャドウによる期待値を三角関数で展開し、高周波成分を切り捨て
 　計算量を多項式時間に抑制可能

‣ 対象とする関数の勾配ノルムが有界であれば、多項式オーダーの計算時間
とデータ数で学習可能

AIへの展望：量子回路の線形特性に対する古典学習

‣ 必要な学習データ数は、ゲート数 に対して線形（効率的）
‣ 学習や予測にかかる計算時間は、 に対して指数増大する場合がある（困難）

d
d

有限個の ゲートとクリフォードゲートからなる有界ゲート量子回路RZ(θ)
一般的な量子状態のダイナミクスを古典計算で完全に把握することは困難

量子回路の線形特性（期待値）を測定データから効率的に古典学習できるか？

古典シャドウとカーネルベースの学習モデル

Du, Hsieh, Tao, Nat. Commun. 16, 3790 (2025)

https://www.nature.com/articles/s41467-025-59198-z
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‣ 50量子ビットの横磁場イジング模型で、厳密解に近い基底エネルギーを達成
‣ 有限回の測定ショットでも高い計算精度を維持
‣ 多層パーセプトロンやカーネルリッジ回帰、ランダムフーリエ特徴量と比較し、
顕著に低い予測誤差と高いエネルギー推定精度を実現
 

実験結果：

最適化ループ

量子 古典通常のVQEは、最適化ループごとに量子プロセッサへ
のアクセスが必要（コストが高い）

VQEのオフライン学習：
‣ VQE回路の出力データを量子デバイスから収集
‣ 古典学習モデルを最適化し、量子回路パラメータを決定

最適化ループ

量子 古典

Du, Hsieh, Tao, Nat. Commun. 16, 3790 (2025)

AIへの展望：量子回路の線形特性に対する古典学習

https://www.nature.com/articles/s41467-025-59198-z
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AIへの展望：量子デバイスでの大規模推論への応用

量子コンピュータの進展に合わせた大規模系への拡張

最適化ループ

量子 古典 古典

推論

最適化ループ

量子 古典 量子

再最適化＋推論

古典2. HPCでのVQEの事前学習 →
パラメータの再最適化＋推論
を量子計算機で実装

1. HPC上での古典推論による
基底エネルギーの推定

HPC単体では難しい大規模量子系や、強くエンタングルした
系での推論の可能性
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量子機械学習の進展と可能性について、私見を交えて紹介した

まとめ

1）量子学習モデルの訓練可能性、汎化性の理解
2）問題に応じた量子ニューラルネットワークモデルの設計
3）量子コンピュータで基底状態を探索 ＋ HPCでエネルギーを推定
4）有界ゲート量子回路の期待値計算に対するHPC古典学習の可能性

HPCを活用した量子・古典ハイブリッドの潜在的ポテンシャルや、
AI応用への幅広い可能性を検討する好機にある


