
Unified Memory
Supercomputers in CCS

藤田典久
筑波大学計算科学研究センター助教

Retired

Cygnus
(Apr. 2019 - March 2025)
2.4 PFLOPS Peak

Node Configuration:
2x Intel Xeon Processors
(Skylake)
4x NVIDIA V100 GPUs
4x Bittware 520N FPGA
Boards
(Intel Stratix 10 FPGA)

Pegasus
(Apr. 2023 -)
8.1 PFLOPS Peak

Node Configuration:
1x Intel Xeon Processor
(Sapphire Rapids)
1x NVIDIA H100 GPU
(PCIe)
128GB DDR5 Memory +
2TB Intel Optane
Persistent Memory per
node

Miyabi
(Jan.2025 -)
80.1 PFLOPS Peak

GPU Node Configuration:
1x NVIDIA GH200
Superchip
(Grace CPU+Hopper

GPU)
Co-operation with U.
Tokyo (as JCAHPC)

Sirius (PACS 12.0)

Sirius (PACS 12.0)
(Planned: 2026Q1 -)
11.9 PFLOPS Peak

Node Configuration:
4x AMD MI300A APU
(Zen4 GCDs + CDNA3
XCDs)

(96x MI300A in total)

筑波⼤学のスーパーコンピュータ

Unified Memory型スーパーコンピュータ
•現在，2つのユニファイドメモリ型スーパーコンピュータを運用中
• Miyabi (NVIDIA)
• NVIDIA GH200搭載スーパーコンピュータ
• 筑波大学と東京大学が共同で運営
（Joint Center for Advanced High Performance Computing: JCAHPC）
• 80.1 PFLOPS 倍精度演算浮動小数点数演算ピーク

• Sirius PACS 12.0 (AMD)
• CCSに導入予定のAMD MI300A搭載スーパーコンピュータ
• 2026年Q1に運用開始予定
• 11.9 PFLOPS 倍精度演算浮動小数点数演算ピーク
• 本公演はこちらを主に扱う

2

なぜUnified Memoryを採用するのか
•課題：GPUプログラミングは難しい
• CPUとGPUのメモリが別れている事がプログラミングを複雑化している
• 計算処理のGPU化だけでも大変なのに，考慮しなければならない事柄が増えて
しまう
• GPUメモリの確保解放，CPU-GPU間データ転送，転送タイミング

• Unified Memoryがこの問題を軽減できると考えている

3

利点 ⽋点
GPUメモリ管理やデータ転送が根本的
に不要となる

CPUとGPUの間で共有されるリソース
が⽣まれ，性能低下やノイズが懸念
される

プログラミングの容易化 どのような要素が性能に影響を与え
るか明らかではない

NVIDIA GH200

• Grace CPUとHopper GPUを1つのモジュー
ルとして構築した製品
• CPUとGPUが別々のメモリを有するもの
のUnified Memoryを提供
• NVLink-C2Cによる広帯域低レイテンシな相
互結合

• CPU/GPUはCPU Memory/GPU Memoryに相
互にメモリアクセスができる
• アクセス頻度に応じたデータの自動移動
（Migration）
• High performance CUDA Managed Memory

4

GH200 module

Grace CPU Hopper GPU

CPU Memory
(LDPPR5X,

120GB)

GPU Memory
(HBM3, 96GB)

⽚⽅向
450 GB/s

500 GB/s 4 TB/s

NVLink-C2C

相互アクセス

AMD MI300A APU
• MI300 is an APU

• CPUコアとGPUユニットが同じHBM3メモリを共有
• キャッシュコヒーレントが保たれる

• MI300は9つのダイから構成される（MCM）
• 3x Core Chiplet Dies (CCDs)

• = CPU コア
• 8x Zen4 cores / CCD; 24 Cores 合計

• 6x Accelerated Compute Dies (XCDs)
• = GPU ユニット
• 38x Compute Units (CUs) / XCD; 228 CUs 合計

• ただし，ソフトウエアからは，これらのダイはモノリシッ
クに扱える
• NUMAではない（分割設定も可能）

• HBM3メモリ
• 128 GBの容量と5.3 TB/sの帯域

5

CCD CCD CCD

XCD XCD XCD

XCD XCD XCD

CPU Cores

GPU Units

APU package

HBM

HBM

HBM

HBM

HBM

HBM

HBM

HBM

5.3 TB/s

128GB

24 Cores

228 CUs

MI300Aの予備性能評価
•性能評価
• CPU / GPU メモリ帯域（BabelStream）
• CPU / GPU 演算性能（SGEMM / DGEMM）

•注：Siriusはインストール中のため，以降の性能評価には量子科学技術
研究開発機構（QST）が運用するPlasma Simulator（PS）を用いる
• SiriusとPSはほぼ同等のアーキテクチャであるため，同等の性能が得られると考
えている
• ただし，PSは水冷だが，Siriusは空冷（Power Limit設定は同じ）

6

MI300Aメモリバンド幅
• CPUとGPUは同じメモリを共有するが，実効メモリバンド幅は異なる
• CPU BW = 190 GB/s, GPU BW = 3.8 TB/s

• GPU帯域は高い性能が得られるが，CPU帯域は制限されている
• DDR5相当だが，PCIe経由のCPU-GPU間帯域よりは高速
• APUあたり3 GCD (24コア) しか実装されていない
• CPU L3 ⇔ Infinity Fabric の帯域が限られているように見える

7

Copy Mul Add Triad Dot

CPU
(OpenMP)

186 GB/s 186 GB/s 195 GB/s 195 GB/s 197 GB/s

GPU (HIP) 3827 GB/s 3877 GB/s 3772 GB/s 3780 GB/s 3206 GB/s

Memory bandwidth of CPU and GPU
BabelStream* v5.0, Array Size = 8.0 GB x 3

* github.com/UoB-HPC/BabelStream
Note: Measured on Plasma Simulator at QST, Japan. One of four APU is used with ROCm 6.4.3. GB=230.

MI300A GEMM演算性能
• 演算理論ピーク性能

• CPU (24x Zen4 Cores): 2.8 TFLOPS (SP), 1.4 TFLOPS (DP)
• GPU (228x CDNA3 CUs): 122.6 TFLOPS (SP / SP Dense Matrix),

61.3 TFLOPS (DP), 122.6 TFLOPS (DP Dense Matrix)
• SP:DP = 2:1 だが matrix fused-multiply-add (MFMA) 命令がDP Dense Matrix演算を加速する

• ほとんどの演算性能はGPUによって得られる
• CPU:GPU = 1:44 for SP/DP scalar or 1:88 for DP matrix
• 実測でも 40x (SGEMM), 58x (DGEMM) の性能差がある

8

SGEMM DGEMM

CPU 2.50 TFLOPS (N=1920) 1.35 TFLOPS (N=1152)

GPU 98.6 TFLOPS (N=3840) 79.1 TFLOPS (N=3584)

SGEMM and DGEMM performance of CPU and GPU
(M=N=K; NoTrans; AOCL BLIS-mt for CPU, and hipBLAS for GPU)

Note: Measured on Plasma Simulator at QST, Japan. One of four APU is used with AOCL 5.1.0 and ROCm 6.4.3.

MI300A GEMM Performance in Details

9

SGEMM/DGEMM on CPU with AOCL 5.1.0 SGEMM/DGEMM on GPU with ROCm 6.4.3

Strange performance drop around N=4096.

NVIDIAからAMDへの移植
• CUDAコード

• AMD公式変換ツール hipify-perl / hipify-clang
• CUDAコードをHIPコードに自動的に変換できる
• cuBLAS, cuFFT等も対応できる
• 相互に共通の機能がない場合は対応できない
• コードベース変換であり，最適化などは行われない

• OpenACCコード
• OpenACCコードをそのままAMD GPUで動かすのは
現状難しい

• OpenMPに変換することが次善策か
• OpenMPコード（Target）

• AMD, NVIDIAともにコンパイラが提供されている
• 性能の可搬性については今後の検証が必要

• その他 言語・ライブラリ
• Kokkos, Julia等

10

NVIDIA Platform AMD Platform

CUDA HIP

OpenACC OpenMP

OpenMP Target OpenMP Target

Hipify

As-is?

Portability Layer

Kokkos (C++ Library)

Raja (C++ Library)

Julia

SYCL (C++ based)

CuPy (Pyhton Library)

...等

変換?

Unified Memory Programming with OpenMP

11

#include <cstdio>

int main() {
float* a = new float[10];
float* b = new float[10];
float* c = new float[10];

for (int i = 0; i < 10; i++) {
a[i] = i; b[i] = i; c[i] = 0; }

#pragma omp target data map(to:a[:10],b[:10]) map(from:c[:10])
#pragma omp target teams distribute parallel for

for (int i = 0; i < 10; i++) {
c[i] = 2.0f * a[i] + b[i];

}

for (int i = 0; i < 10; i++) {
printf("c[%d] = %f¥n", i, c[i]); }

return 0;
}

#include <cstdio>
#pragma omp requires unified_shared_memory

int main() {
float* a = new float[10];
float* b = new float[10];
float* c = new float[10];

for (int i = 0; i < 10; i++) {
a[i] = i; b[i] = i; c[i] = 0;

#pragma omp target teams distribute parallel for
for (int i = 0; i < 10; i++) {

c[i] = 2.0f * a[i] + b[i];
}

for (int i = 0; i < 10; i++) {
printf("c[%d] = %f¥n", i, c[i]); }

return 0;
}

Data mapがCPU-GPU間でデータ転送をするために必要

Traditional (Separated) Memory Model Unified Shared Memory Model

Unified shared memory (USM)が必須と宣⾔

Data mapは必要ない

GPUで
実⾏される
領域

実行

12

$ amdclang++ sample.cpp -O3 -fopenmp --offload-arch=gfx942
$./a.out
c[0] = 0.000000
c[1] = 3.000000
c[2] = 6.000000
c[3] = 9.000000
c[4] = 12.000000
c[5] = 15.000000
c[6] = 18.000000
c[7] = 21.000000
c[8] = 24.000000
c[9] = 27.000000

$ amdclang++ sample.cpp -O3 -fopenmp --offload-arch=gfx942
$ HSA_XNACK=1 ./a.out
c[0] = 0.000000
c[1] = 3.000000
c[2] = 6.000000
c[3] = 9.000000
c[4] = 12.000000
c[5] = 15.000000
c[6] = 18.000000
c[7] = 21.000000
c[8] = 24.000000
c[9] = 27.000000

Traditional (Separated) Memory Model

Unified Shared Memory Model

コンパイルオプションは同⼀

HSA_XNACK=1でUSMを有効化する

まとめ
• 筑波大学 計算科学研究センターでは2つのUnified Memory型スーパーコンピュータ
を運用中
• Miyabi (NVIDIA GH200)
• Sirius PACS 12.0 (AMD MI300A)

• 現在設置中であり運用開始は2026年Q1を予定
• GH200とMI300Aは似て非なるアーキテクチャとなっている

• AMD MI300A APU
• CPUとGPUが融合されているが，大半の演算性能はGPUがもたらす

• GPUの利用が必須であり，CPUのみを使うべきではない
• Unified Shared MemoryはGPUプログラミングを簡素化する

• メモリの管理やデータ転送は不要となる
• OpenMP GPU (target) は，CPU OpenMPプログラミングと同等の複雑度でGPUプログラミングを実現できる

• 今後の課題として，実アプリでの性能評価や生産性の評価がある
13

