
AXEのカスタムLSI設計サービス、
ROS2通信ハードウェアIP提供

2025/DEC
AXE, Inc.

もう、CPUは(簡単には)速くならないよ

● ついに、微細化 限界

● 微細化 による

● 高集積

● 高クロック周波数

● コア数 増加

 は終了

● 専用 ロジック回路による
● 高速化
● 省 消費電力

 を行うしか

背景:
カスタムLSI

設計&製造の
民主化

技術者 不足をStop!日本の半導体 産業 復興!

•OSSの開発ツールで、LSI 開発

● 無料ツールの使い手が増える → 技術者不足 解消!

● 半導体 設計 技術者

● 論理回路 設計 技術者

•半導体 工場は、「お高くない」ものもある

● 65nm とか、安くて かなりいい

•レガシーファブの活性化

みんなのLSI
俺のASIC

LSILSI開発の民主化だっ開発の民主化だっ!!!!!!

お金持ちだけの
LSI

産総研 直下のAIST Solutionsも、
ロングテール半導体開発を推進

国内もLSI開発の民主化 推進
日本も、国の金で 施設を用意
ふくおかIST(公益財団法人 福岡県産業・科学技術振興財団)
福岡システムLSI総合開発センター
「システムＬＳＩ設計試作センター」

● http://www.ist.or.jp/lsi/pg04_02.html
● ベンチャー企業が半導体の設計ツールを無料(安価)で利用できる
● LSI設計、 少量 試作できる

● 50〜100万円 あれば、LSIの少量生産ができる仕組みがある

http://www.ist.or.jp/lsi/pg04_02.html

Open Source EDA Supporters (discode)
https://discord.com/channels/753405627564294176/932209975558832128

● OSS EDAをサポートする人たちの集まり

● 親切で優しい

● ふくおかIST のOSS EDAサーバのユーザ会

● サーバを維持するモチベーション

● オレオレ Open PDKを開発したり: 森山氏

● オレオレ Standard Cellライブラリを開発できるツールの開発者が居たり: 澤氏⻄ @早稲田大

● オープンソースＥＤＡフォーラム @福岡

https://discord.com/channels/753405627564294176/932209975558832128

OpenSUSI,AIST Solの団体

 AIST Solutionsは、2024年4月5日付で一般社団法人OpenSUSIを設立しました。
 https://www.semiconportal.com/archive/editorial/industry/240423-aistsolutions.html より引

用
 産業技術総合研究所が日本版「半導体ICの民主化」プロジェクトを進めていることがわかった。

産総研の総責任者である理事長の石村和彦氏（図1）は、産総研が開発した技術を社会実装して世
の中の役に立たせようという石村改革を就任以来進めてきた。2023年設立したAIST Solutionsは
社会実装の先頭部隊。2024年4月には半導体ICの開発に向けて「OpenSUSI」を設立した。これこ
そ半導体の民主化を狙った組織である。

 4月に設立されたOpenSUSIが扱うのは、マーケットが豊富なレガシープロセスの半導体であり、
ロングテール製品向けにASIC（アナログやデジタル回路を中心に設計されたハードウエアIC）や
SoC（CPUなどのプロセッサを中心にソフトウエアも含めたIC）などを開発するためのサポートを
行う。

 レガシープロセス:最先端の配線構造やトランジスタ構造をフルに3次元活用しない。

https://www.opensusi.org/

ISHI会

 https://ishi-kai.org/

 「石 (チップ)」の会

 OSS EDAを実際に使用して、IPを開発する人たち

 学識経験者/大学の先生も多数

 ワールドワイドなプロジェクトを実施中

● 日本の担当は、オンチップ 安定化電源

 初心者 指導も熱心に行っている

● JASA RISC-V WGにも出席

https://ishi-kai.org/

機能 数 備考

CPU”松竹V” 1 RISC-V RV32Iに、4SIMD 8bit浮動小数点ベクトル機構、ハードウェアによるマルチタスク制御機構、多重
分岐命令(特許取得済、Prolog,Lisp,JavaVMの実行を加速)と、それらを操作する命令を付加

ROS2通信機能 1 "ROS2rapper"という名称の、新開発のハードウェアによるROS2通信機能。CPUから初期化することで、
自動的に通信を行う

RAM 1 プログラム・コードRAM 64KBytes,データRAM 64KBytes

SIO(UART) 3 SIO0(UART0)は、bootloadingとデバッグ・コンソールに使用される。UART1,2はユーザが自由に使用でき
る

GPIO 38 18本はPullUP指定可能。20本はPullDown指定可能。2本は、SIO1と兼用。2本は、SIO2と兼用。18本は外
部イベント源として使用可能。(※外部イベントとは、一般CPUにおける割込のようなもの。外部イベント
が発生すると、イベントについて待機しているスレッドが起床する)

AWG 1 16bit出力,1ch。出力ピンは、PWMと兼用。PWMと排他的に使用

PWM 8 出力ピンは、AWGと兼用。AWGと排他的に使用

Ether I/F 1 NICはオンチップ。PHY I/Fを持つ (PHYは外付け)

AXEの完全オリジナルLSI
”Laxer AX1001”概要仕様

TSMC 90nmで製造,920万トランジスタ
LQFP 100pin
27/SEP/2024 京都で1stシリコン動作

松竹V :RECONF講演賞 企業部門@2025年1月研究会 受賞
https://www.ieice.org/iss/reconf/top/?page_id=612

Laxer2 チップ絶賛開発中
● およそ Laxer1.5 と同等の機能&性能
● ハードウェアによるマルチ・タスク,排他/同期機構
● ROS2rapper ハードウェア搭載 (Ether MAC)
● 内蔵RAM 512KBytes
● 外付けS-RAM (Max:4MBytes)
● CPU Clock: 320MHz (予定)

● 組込みマイクロ・コントローラとして、十分であろう

ROS2プロトコルを完全ハードウェア化した…

● CPU無しで、ロボットの部品モジュールができる
● センサとROS2プロトコルHWだけで、センサ・モジュール
● PWMとROS2プロトコルHWだけで、アクチュエータ・モジュール
● アプリケーションはC言語で書いておけば、すぐハードウェア論理に合成

● ロボット部品が、ゴミのようなLSIでできる ← CPU不要
● 高速、堅牢、低消費電力

PWM

センサ
& ADC

ROS2
ハードウェア

ROS2
ハードウェア

Ether IF
+ Phy

Ether IF
+ Phy

ROS2
アプリ

(HLS言語記述)

ROS2
アプリ

(HLS言語記述)
ロボット司令
モジュール

AXE製、”ROS2rapper”

ROS2rapperのある世界=しょぼいエッジ機器にはLinux不要=省電力&堅牢

“ROS2rapper”IPは、
オープンソース・ハードウェアで配布中.
 https://github.com/AXE-jp/ros2rapper

マルチタスクだが、
OSプログラム・コード
OSワーキング・エリア

不要!

“俺SoC”,とことんOS無し
● 省電力、省メモリ、堅牢かつ高速
● ロボットの部品モジュールがローコストで簡単に作れる

ハードウェア・マルチスレッド機構
● OSソフトウェア一切なしで、スレッド切り替え
● ハードウェア・セマフォで排他/同期(重要)
● LR/SC(RISC-Vの排他制御プリミティブ)もある
● 外部ピンからの入力で、スレッド起床(ハードウェアのみで)

● 割り込みなし(割り込み相当の処理は、専用スレッドで)
● ラウンドロビン・スケジューリング

スレッド1 スレッド2

セマフォ
取得(成功)

セマフォ
解放

セマフォ
取得(待ち)

セマフォ
取得(成功)

セマフォ
取得(成功)

スレッド2

休止

スレッド2

再開

オレ達のCPU「松竹V(しょうちくぶい)」の排他制御

きわどい
領域

マルチタスクだが、
OSプログラム・コード
OSワーキング・エリア

不要!

オレ達のCPU「松竹V(しょうちくぶい)」の外部イベント
(割込み相当)
ハードウェア・マルチスレッド機構
● OSソフトウェア一切なしで、スレッド切り替え
● 外部ピンからの入力で、スレッド起床(ハードウェアの
みで)
● 割り込みなし

● 割り込み相当の処理は、専用スレッドで。
● 割込み起動より、高速

● レジスタ退避などしないから

スレッド1 メイン・
スレッド

メイン・
スレッド・
処理外部ピン

信号

外部イベント
(セマフォ)待ち

IO処理
(通常CPUの
割込みルーチン)

スレッド操作、
セマフォ操作命令

新命令による
Python,Ruby,

論理推論AI(Prolog,Lisp)

ネイティブ・コード高速化

【特許第7421850号】 登録日【2024年1月17日】
(東京エレクトロンと竹岡の共同特許)
単純でごくフツー
1970年代末期〜80年代(高級言語マシン、Lispマシン,Prologマシン全盛)に
取られていても不思議ではないような機構

MIT Lisp MachineやPSI(ICOTの
Prologマシン,1986年)を超えたいヒトは行列計算のみで生くるものにあらず

by 俺

論理推論は古くないんだぞ!
● 故障診断など、精密な出力が必要な分野では、現在も活用中

記号論理推論AIとは
 知識ベースをもとに、記号論理推論を行う

 推論規則も、知識の一種
 推論規則も、一般的な知識も、すべて、知識として扱う

 記号論理推論(Symbolic Logical Inference)とは三段論法を行うこと

 推論規則は、人間が書く
– LLMの助けを借りる

 論理推論の特徴
 精密
 問題の原因を明らかにできる
 問題の解消は、推論規則の追加/修正
 説明のできるAI

 ソクラテスは人間である
 人間は死ぬ

知識(推論規則)

論理推論AIの計算過程
 1) ソクラテス : 人間
 2) 人間 → 死ぬ
 3)∴ソクラテス→死ぬ
 ということを見つけることが論理推論
上記を、論理推論 1回と 数える。
三段論法の1回=論理推論の1回

「ソクラテスは死ぬか?」
を問い合わせ

AI
Query

推論規則(知識ベース)
参照

「死にます」

多重分岐(レジスタ間接レジスタ指定) 新命令
● Python,ruby(native code),Prolog,Lispが速くなる

● branch_reg_indirect IREG

 pc ← pc + xreg[IREG] ; xreg[n]は、n番の汎用レジスタ

 ※Branch_and_Link機能付き, callにもなる

● jump_reg_indirect IREG1,REG2

 pc ← xreg[IREG1] + REG2

 ※Branch_and_Link機能付き, JALにもなる

● mov_reg_regindirect dst,ireg

 dst ← xreg[ireg]

● mov_regindirect_reg ireg,src

 xreg[ireg]←src

0x400xxx

0x400100

0x400yyy

1

x0

x1

x2

x3

x4

IREGがx3(内容=1)のとき

X1が指される。

参照の場合、実効値0x400100

【特許第7421850号】
 登録日【2024年1月17日】

mov_reg_regindirect, branch_reg_indirect 追加後のパイプライン

2022/JUL/15 a

このパスを追加

俺SoC LSIでは、追加したパスは、クリティカル・パスにはならない

● GNU-Prolog のWAM
コードでは、

switch_on_term で 1 つめの
arity の型
 変数/アトム/整数/リス
ト/構造体
によって分岐する
● 分岐先で各arityの値を
チェックする

foo(1, a, X) :- bar(1, X).
foo(a, [c,d], X) :- bar(2, X).
foo([a,b], c(d), X) :- bar(3,
X).
foo(a(b), 1, X) :- bar(4, X).

GNU-PrologのWAM(抽象マシン)コード
predicate(foo/
3,1,static,private,monofile,global,[
 switch_on_term(1,4,2,6,8),

label(1),
 try_me_else(3),

label(2),
 get_integer(1,0),
 get_atom(a,1),
 put_value(x(2),1),
 put_integer(1,0),
 execute(bar/2),

label(3),
 retry_me_else(5),

label(4),
 get_atom(a,0),
 get_list(1),
 unify_atom(c),
 unify_list,
 unify_atom(d),
 unify_nil,
 put_value(x(2),1),
 put_integer(2,0),
 execute(bar/2),

label(5),
 retry_me_else(7),

label(6),
 get_list(0),
 unify_atom(a),
 unify_list,
 unify_atom(b),
 unify_nil,
(以下略)

Pl_Switch_On_Term()の内容
CodePtr FC
Pl_Switch_On_Term(CodePtr c_var,
 CodePtr c_atm, CodePtr c_int,
 CodePtr c_lst, CodePtr c_stc)
{
 WamWord word, tag_mask;
 CodePtr codep;

 DEREF(A(0), word, tag_mask);
 A(0) = word;

 if (tag_mask == TAG_INT_MASK)
 codep = c_int;
 else if (tag_mask == TAG_ATM_MASK)
 codep = c_atm;
 else if (tag_mask == TAG_LST_MASK)
 codep = c_lst;
 else if (tag_mask == TAG_STC_MASK)
 codep = c_stc;
 else /* REF or FDV */
 codep = c_var;

 return (codep) ? codep : ALTB(B);
}

 ランタイム関数
Pl_Switch_On_
Term() では、
1つめのarityで
あるA(0)のタグ
(下位3ビット)
によって、
次に実行する
分岐先を返すよ
うになっている

RISC-V 64bit Gnu Prolog コンパイルド・バイナリとその高速化
gplcでコンパイルした native codeをobjdump -d の一部

00000000000096b8 <X0_ap__a3>:

 96b8: 00000517 auipc a0,0x0

 96bc: 02050513 addi a0,a0,32 # 96d8 <X0_ap__a3+0x20>

 96c0: 00000597 auipc a1,0x0

 96c4: 02458593 addi a1,a1,36 # 96e4 <X0_ap__a3+0x2c>

 96c8: 00000617 auipc a2,0x0

 96cc: 05460613 addi a2,a2,84 # 971c <X0_ap__a3+0x64>

 96d0: 014900ef jal ra,996e4 <Pl_Switch_On_Term_Var_Atm_Lst>

 96d4: 00050067 jr a0

 96d8: 00000517 auipc a0,0x0

 96dc: 04050513 addi a0,a0,64 # 9718 <X0_ap__a3+0x60>

 976c: 00ab3823 sd a0,16(s6)

 9770: f49ff06f j 96b8 <X0_ap__a3>

 9774: 00000013 nop

%%% Prologソース
ap([],Y,Y).
ap([A|X],Y,[A|Z]) :- ap(X,Y,Z).
%% ap(X,Y,[a,b,c]).

この2行の部分を、
あるレジスタ中の値で指定された、
別なレジスタ中の値を番地として、
jumpするようなコードに変更する

(コンパイラが新命令を使用するように変更)
新命令「 branch_reg_indirect %rax 」

で置き換えて、高速化

レジスタ間接によるレジスタ指定ができる新命
令を追加
特にジャンプ命令
ロード命令、ストア命令
例えば、WAM コード switch_on_term をアセンブ
リ・コードにする場合に、型を示すタグ(3bit)に
よって、レジスタ間接によって指定されたレジス
タの値(アドレス)にジャンプすると高速になる
すなわち

 jal ra,Pl_Switch_On_Term@PLT ;サブルーチン・コール
なので、とても遅い

 jr a0

を、下記1命令で置き換えて、高速化
 branch_reg_indirect IREG ; pc ← pc + xreg[IREG]

Lisp, Haskellなど高級な言語は同様に高速化可能だろう
(動的に型チェックをする言語の実行系)

多重分岐の飛び先アドレスを
レジスタにセット

mailto:Pl_Switch_On_Term@PLT

 加速命令使用の実測値

テスト・プログラム 新命令
不使用(ms) N

 加速命令
使用(ms) U

加速率(%)
 (N-U)/N*100

備考

queens.pl (16queen)
 (10回繰り返し)

61,638 58,930 4.39 みんな大好き
8queen

cal.pl (10回繰り返し) 11,026 10,827 1.80 万年カレンダ
数値計算

ham.pl (10回繰り返し) 52,591 52,324 0.51 ???

● とてもシンプルな機構(線を引っ張るだけ)
● 4%以上の加速が得られているので、十分 効いている
● コスパ良し

実行時間

● gplc(GNU Prologコンパイラ)にオプション --emit-regind を新設
● 測定環境

– FPGA(Nexys Video)に松竹V CPUコア, 命令コード・メモリ=256KB, データ・メモリ=1MB
– Clock: 50MHz
– ベア・メタル用runtimeルーチンを用意

付録

ジャンプ命令に基づくパイプライン処理を
制御するプロセッサ及びプログラム

(東京エレクトロンと竹岡の共同特許)

特許【第7506718号】
登録日　【2024年6月18日】

ジャンプ命令に基づくパイプライン処理を
制御するプロセッサ及びプログラム
(東京エレクトロンと竹岡の共同特許)

【第7506718号】
登録日　【2024年6月18日】

ごく普通のディスパッチ方法(既存ソフトウェア)
ld a1,[a0] ;a0レジスタが指している番地から、値(ジャンプ先)をa1レジスタにロード
jump a1 ;a1レジスタの内容アドレスへジャンプ (プログラム・カウンタへa1の内容を転送)

ルーチンAdr

type0sub+1番地

type1sub+1番地

Type0:

Type1:

a0

● a0レジスタの内容で、ディスパッチ・テーブルを引き
● そのテーブルの内容(ルーチンの先頭の命令)を CPU コアの各 部分にセットする

特許出願アイデア1:ディスパッチ高速化1
● fast1_multi_branch a0 命令を考案
● ディスパッチ・テーブルに、分岐先アドレスと共に、分岐先(次に実行する)命令も置いておく

● 命令フェッチが高速になる

ルーチンAdr 先頭命令

type0sub+1番地 先頭命令

type1sub+1番地 先頭命令

:

:

Type0:

Type1:

a0

● a0レジスタの内容で、ディスパッチ・テーブルを引き
● そのテーブルの内容(ルーチンの先頭の命令)を CPU コアの各 部分にセットする
● このテーブルは、CPUコアの内部にもつ。比較的 小容量で高速

特許出願アイデア2:高速ディスパッチ命令2
● fast2_multi_branch a0 命令を考案
● ディスパッチ・テーブルに、分岐先アドレスと共に、

● 分岐先(次に実行する)命令のデコード済み情報(CPUコア内情報)と
● 分岐先の次の命令(次の次に実行する)命令も置いておく

● ※最初の命令のフェッチとデコードを省略する。2番目の命令フェッチを省略する

ルーチンAdr 2番目命令 先頭命令のデコード済み
コア内部情報

type0sub+2番地 2番目命令 ShiftRight a0,a0,3をデ
コードした情報ビット列

xxx+2番地 2番目命令 tag_add a0,a0,10をデ
コードした情報ビット列

:

:

Type0:

Type1:

a0

● a0レジスタの内容で、ディスパッチ・テーブルを引き
● そのテーブルの内容を CPU コアの各 部分にセットする
● このテーブルは、CPUコアの内部にもつ。比較的 小容量で高速

以上

AI もやってます 「ごまめ 」
健康のためのAI

お問い合わせ
https://www.axe.bz/

mail to: eigyo@axe.bz

®

https://www.axe.bz/

付録

オレ達のCPU「松竹V(しょうちくぶい)」

機械学習AI 加速用 ベクトル計算ユニット
・8bit float,4SIMD,ベクトル・パイプライン
・動的クロック切り替え機構で500KHz〜320MHzで、動作
 ※最高 480MHz (動的クロック切り替え非対応)
・Vector ExtensionのImplementation-defined Constant Parameters(実装
固有パラメータ)
ELEN:32 ,VLEN: 1024

・ベクトルレジスタ
 1024ビットのベクトルレジスタ×32個
 ベクトルレジスタはすべてのタスクで共有(実体は1つ)
機械学習AIの推論に最適な8bit浮動小数点演算をベクトル処理
● エッジ機器内での、AI処理
 ↓
● データ通信量の削減
・分散処理による、全体の負荷の分散

エッジデバイスでも
AI処理を!

32ビットのスカラ浮動小数点数レジスタ
(Fレジスタ): 32個も備える

8bit 浮動小数点ベクトル演算命令

● AX1001の8bit浮動小数点数のフォーマット

– 仮数部:3bit, 符号:1bit 指数部:4bit, 指数バイアス=7

オレ達のCPU「松竹V(しょうちくぶい)」
● 省電力、省メモリ、堅牢かつ高速
● ロボットの部品モジュールがローコストで簡単に作れる

論理推論 AI加速 機構をRISC-Vコアに追加
● 特許取得済み
● 第7506718号,2024年6月18日 (東京エレクトロンと共同特許)

● GnuPrologのコンパイルド・バイナリを加速
● 詳細は、付録参照のこと

エッジデバイスでも
大脳的処理を!

その他の
カスタム命令

テストプログラム名 CPUクロック周波数・消費電力(mW)

- - 320MHz 1.79MHz

- - 実測(1.0v)mA 実測(3.3v)mA 1.0V+3.3v計
(mW)

実測(1.0v)mA 実測(3.3v)mA 1.0V+3.3v計
(mW)

メモリテスト 177.0 5.0 193.5 10.0 0.0 10.0

有意義なことはしていない 113.0 11.0 149.3 30 10 63.0

Laxer AX1001 消費電力概要

参考 ※実際には、DC-DCコン
バータなどで損失が出るの
で、仮の理想値

電池容量
(mW換算)

320MHz(時間) 1.79MHz(時間)

単1 形アルカリ電池容量約
10,000 mAh/1本,
3本4.5v使用

135,000 697.67 13,500.00

単3 形アルカリ電池容量約
1,000～2,900mAh/1本,
3本4.5v使用

39,150 202.33 3,915.00

コイン電池CR2450 (3V)
620mAh, 2個(6V)使用
 (※最大電流30mA/1個)

7,440 (38.45
※電流が足りない)

744.00

付録
レジスタ間接レジスタ指定

参考:高速化対象: GNU-Prologの80x86(64bit)版オブジェクト(アセンブリ・コード)

● GNU-Prolog のアセンブリコードでは、WAM(Prolog 中間仮想マシン)
のswitch_on_termに対応するランタイム関数Pl_Switch_On_Term() を
呼んでいる

● その返り値でジャンプしている
ここで、

● レジスタ間接によるレジスタ指定ができる新命令を追加
○ 特にジャンプ命令

○ ロード命令、ストア命令
● 例えば、WAM コード switch_on_term をアセンブリ・コードにする場
合に、型を示すタグ(3bit)によって、レジスタ間接によって指定された
レジスタの値(アドレス)にジャンプすると高速になる

● すなわち
 call Pl_Switch_On_Term@PLT ;サブルーチン・コールなので、とても遅い
 jmp *%rax
 を、下記1命令で置き換えて、高速化

 branch_reg_indirect IREG ; pc ← pc + xreg[IREG]

X0_foo__a3:
 movq Lpred1_1@GOTPCREL(%rip),%rdi
 movq Lpred1_4@GOTPCREL(%rip),%rsi
 movq Lpred1_2@GOTPCREL(%rip),%rdx
 movq Lpred1_6@GOTPCREL(%rip),%rcx
 movq Lpred1_8@GOTPCREL(%rip),%r8
 call Pl_Switch_On_Term@PLT
 jmp *%rax

Lpred1_1:
 movq Lpred1_3@GOTPCREL(%rip),%rdi
 call Pl_Create_Choice_Point3@PLT

Lpred1_2:
 movq $15,%rdi
 movq 0(%r12),%rsi
 call Pl_Get_Integer_Tagged@PLT
 test %rax,%rax
 je fail
 (略)
 jmp X0_bar__a2@PLT

Lpred1_3:
 movq Lpred1_5@GOTPCREL(%rip),%rdi
 call Pl_Update_Choice_Point3@PLT

Lpred1_4:
 movq ta@GOTPCREL(%rip),%rdi
 movq 0(%rdi),%rdi
 movq 0(%r12),%rsi
 call Pl_Get_Atom_Tagged@PLT
 test %rax,%rax
 je fail
 (略)
 jmp X0_bar__a2@PLT

Lpred1_5:
 movq Lpred1_7@GOTPCREL(%rip),%rdi
 call Pl_Update_Choice_Point3@PLT

Lpred1_6:
 movq 0(%r12),%rdi
 call Pl_Get_List@PLT
 test %rax,%rax
 je fail
(以下略)

この2行の部分を、
あるレジスタ中の値で指定された、
別なレジスタ中の値を番地として、
jumpするようなコードに変更する

(コンパイラが新命令を使用するように変更)
 新命令「 branch_reg_indirect %rax 」
で置き換えて、高速化

mailto:Pl_Switch_On_Term@PLT

mov_reg_regindirect (レジスタ間接指定によるデータ・レジスタ指定,参照)

● x[rd] = x[x[rs1]]
● I-type
● 暫定的に、opcode=0b0001011 (custom-0), funct3=0b000, imm=0と

した
● フォワーディング部の修正

○ 次ページ参照

● branch_reg_indirectなどjump系命令も、同様
○ 書き込みレジスタがpcになるだけ

mov_regindirect_reg(レジスタ間接指定によるデータ・レジスタ指定,ストア)

● x[x[rd]] = x[rs1]
● I-type
● 暫定的に、opcode=0b0001011 (custom-0), funct3=0b001, imm=0とし

た
● 変更点

○ Id stageではrdをrs2として扱う
■ rs2のフォワーディング部を利用するため

○ Ex stageではフォワーディング後のrs2をExMa_rdに書き込む
○ 次ページ参照

● mov_reg_regindirectに追加で実装した
○ Fmaxのさらなる低下はなし

mov_reg_regindirect・mov_regindirect_reg(ストア)追加後のパイプライン

2022/JUL/15 b

このパスを追加

俺SoC LSIでは、追加したパスは、クリティカル・パスにはならない

以上

	スライド 1
	スライド 2
	スライド 3
	スライド 4
	スライド 5
	スライド 6
	スライド 7
	スライド 8
	スライド 9
	スライド 10
	スライド 11
	スライド 12
	スライド 13
	スライド 14
	スライド 15
	スライド 16
	スライド 17
	スライド 18
	スライド 19
	スライド 20
	スライド 21
	スライド 22
	スライド 23
	スライド 24
	スライド 25
	スライド 26
	スライド 27
	スライド 28
	スライド 29
	スライド 30
	スライド 31
	スライド 32
	スライド 33
	スライド 34
	スライド 35
	スライド 36
	スライド 37
	スライド 38
	スライド 39
	スライド 40

