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もう、CPUは(簡単には)速くならないよ

● ついに、微細化 限界

● 微細化 による

● 高集積

● 高クロック周波数

● コア数 増加

   は終了

● 専用 ロジック回路による
● 高速化
● 省 消費電力

  を行うしか



背景:
カスタムLSI

設計&製造の
民主化



技術者 不足をStop!日本の半導体 産業 復興!

•OSSの開発ツールで、LSI 開発

● 無料ツールの使い手が増える → 技術者不足 解消!

● 半導体 設計 技術者

● 論理回路 設計 技術者

•半導体 工場は、「お高くない」ものもある

● 65nm とか、安くて かなりいい

•レガシーファブの活性化

みんなのLSI
俺のASIC

LSILSI開発の民主化だっ開発の民主化だっ!!!!!!

お金持ちだけの
LSI



産総研 直下のAIST Solutionsも、
ロングテール半導体開発を推進



国内もLSI開発の民主化 推進
日本も、国の金で 施設を用意
ふくおかIST(公益財団法人 福岡県産業・科学技術振興財団)
福岡システムLSI総合開発センター
「システムＬＳＩ設計試作センター」

● http://www.ist.or.jp/lsi/pg04_02.html
● ベンチャー企業が半導体の設計ツールを無料(安価)で利用できる
● LSI設計、 少量 試作できる

● 50〜100万円 あれば、LSIの少量生産ができる仕組みがある

http://www.ist.or.jp/lsi/pg04_02.html


Open Source EDA Supporters (discode)
https://discord.com/channels/753405627564294176/932209975558832128

● OSS EDAをサポートする人たちの集まり

● 親切で優しい

● ふくおかIST のOSS EDAサーバのユーザ会

● サーバを維持するモチベーション

● オレオレ Open PDKを開発したり: 森山氏

● オレオレ Standard Cellライブラリを開発できるツールの開発者が居たり: 澤氏⻄ @早稲田大

● オープンソースＥＤＡフォーラム @福岡

https://discord.com/channels/753405627564294176/932209975558832128


OpenSUSI,AIST Solの団体

 AIST Solutionsは、2024年4月5日付で一般社団法人OpenSUSIを設立しました。
 https://www.semiconportal.com/archive/editorial/industry/240423-aistsolutions.html より引

用
 産業技術総合研究所が日本版「半導体ICの民主化」プロジェクトを進めていることがわかった。

産総研の総責任者である理事長の石村和彦氏（図1）は、産総研が開発した技術を社会実装して世
の中の役に立たせようという石村改革を就任以来進めてきた。2023年設立したAIST Solutionsは
社会実装の先頭部隊。2024年4月には半導体ICの開発に向けて「OpenSUSI」を設立した。これこ
そ半導体の民主化を狙った組織である。

 4月に設立されたOpenSUSIが扱うのは、マーケットが豊富なレガシープロセスの半導体であり、
ロングテール製品向けにASIC（アナログやデジタル回路を中心に設計されたハードウエアIC）や
SoC（CPUなどのプロセッサを中心にソフトウエアも含めたIC）などを開発するためのサポートを
行う。

 レガシープロセス:最先端の配線構造やトランジスタ構造をフルに3次元活用しない。

https://www.opensusi.org/


ISHI会

 https://ishi-kai.org/

 「石 (チップ)」の会

 OSS EDAを実際に使用して、IPを開発する人たち

 学識経験者/大学の先生も多数

 ワールドワイドなプロジェクトを実施中

● 日本の担当は、オンチップ 安定化電源

 初心者 指導も熱心に行っている

● JASA RISC-V WGにも出席

https://ishi-kai.org/


機能 数 備考

CPU”松竹V” 1 RISC-V RV32Iに、4SIMD 8bit浮動小数点ベクトル機構、ハードウェアによるマルチタスク制御機構、多重
分岐命令(特許取得済、Prolog,Lisp,JavaVMの実行を加速)と、それらを操作する命令を付加

ROS2通信機能 1 "ROS2rapper"という名称の、新開発のハードウェアによるROS2通信機能。CPUから初期化することで、
自動的に通信を行う

RAM 1 プログラム・コードRAM 64KBytes,データRAM 64KBytes

SIO(UART) 3 SIO0(UART0)は、bootloadingとデバッグ・コンソールに使用される。UART1,2はユーザが自由に使用でき
る

GPIO 38 18本はPullUP指定可能。20本はPullDown指定可能。2本は、SIO1と兼用。2本は、SIO2と兼用。18本は外
部イベント源として使用可能。(※外部イベントとは、一般CPUにおける割込のようなもの。外部イベント
が発生すると、イベントについて待機しているスレッドが起床する)

AWG 1 16bit出力,1ch。出力ピンは、PWMと兼用。PWMと排他的に使用

PWM 8 出力ピンは、AWGと兼用。AWGと排他的に使用

Ether I/F 1 NICはオンチップ。PHY I/Fを持つ (PHYは外付け)

AXEの完全オリジナルLSI
”Laxer AX1001”概要仕様

TSMC 90nmで製造,920万トランジスタ
LQFP 100pin
27/SEP/2024 京都で1stシリコン動作

松竹V :RECONF講演賞 企業部門@2025年1月研究会 受賞
https://www.ieice.org/iss/reconf/top/?page_id=612



Laxer2   チップ絶賛開発中
● およそ Laxer1.5 と同等の機能&性能
● ハードウェアによるマルチ・タスク,排他/同期機構
● ROS2rapper ハードウェア搭載 (Ether MAC)
● 内蔵RAM 512KBytes
● 外付けS-RAM (Max:4MBytes)
● CPU Clock: 320MHz (予定)

● 組込みマイクロ・コントローラとして、十分であろう



ROS2プロトコルを完全ハードウェア化した…

● CPU無しで、ロボットの部品モジュールができる
● センサとROS2プロトコルHWだけで、センサ・モジュール
● PWMとROS2プロトコルHWだけで、アクチュエータ・モジュール
● アプリケーションはC言語で書いておけば、すぐハードウェア論理に合成

● ロボット部品が、ゴミのようなLSIでできる  ← CPU不要
● 高速、堅牢、低消費電力

PWM

センサ
& ADC

ROS2
ハードウェア

ROS2
ハードウェア

Ether IF
+ Phy

Ether IF
+ Phy

ROS2
アプリ

(HLS言語記述)

ROS2
アプリ

(HLS言語記述)
ロボット司令
モジュール

AXE製、”ROS2rapper”

ROS2rapperのある世界=しょぼいエッジ機器にはLinux不要=省電力&堅牢

“ROS2rapper”IPは、
オープンソース・ハードウェアで配布中.
 https://github.com/AXE-jp/ros2rapper



マルチタスクだが、
OSプログラム・コード
OSワーキング・エリア

不要!

“俺SoC”,とことんOS無し
● 省電力、省メモリ、堅牢かつ高速
● ロボットの部品モジュールがローコストで簡単に作れる

ハードウェア・マルチスレッド機構
● OSソフトウェア一切なしで、スレッド切り替え
● ハードウェア・セマフォで排他/同期(重要)
● LR/SC(RISC-Vの排他制御プリミティブ)もある
● 外部ピンからの入力で、スレッド起床(ハードウェアのみで)

● 割り込みなし(割り込み相当の処理は、専用スレッドで)
● ラウンドロビン・スケジューリング

スレッド1 スレッド2

セマフォ
取得(成功)

セマフォ
解放

セマフォ
取得(待ち)

セマフォ
取得(成功)

セマフォ
取得(成功)

スレッド2

休止

スレッド2

再開

オレ達のCPU「松竹V(しょうちくぶい)」の排他制御

きわどい
領域



マルチタスクだが、
OSプログラム・コード
OSワーキング・エリア

不要!

オレ達のCPU「松竹V(しょうちくぶい)」の外部イベント
(割込み相当)
ハードウェア・マルチスレッド機構
● OSソフトウェア一切なしで、スレッド切り替え
● 外部ピンからの入力で、スレッド起床(ハードウェアの
みで)
● 割り込みなし

● 割り込み相当の処理は、専用スレッドで。
● 割込み起動より、高速

● レジスタ退避などしないから

スレッド1 メイン・
スレッド

メイン・
スレッド・
処理外部ピン

信号

外部イベント
(セマフォ)待ち

IO処理
(通常CPUの
割込みルーチン)



スレッド操作、
セマフォ操作命令



新命令による
Python,Ruby,

論理推論AI(Prolog,Lisp)

ネイティブ・コード高速化

【特許第7421850号】 登録日【2024年1月17日】
(東京エレクトロンと竹岡の共同特許)  
単純でごくフツー
1970年代末期〜80年代(高級言語マシン、Lispマシン,Prologマシン全盛)に
取られていても不思議ではないような機構

MIT Lisp MachineやPSI(ICOTの
Prologマシン,1986年)を超えたいヒトは行列計算のみで生くるものにあらず

by 俺



論理推論は古くないんだぞ!
● 故障診断など、精密な出力が必要な分野では、現在も活用中

記号論理推論AIとは
 知識ベースをもとに、記号論理推論を行う

 推論規則も、知識の一種
 推論規則も、一般的な知識も、すべて、知識として扱う

 記号論理推論(Symbolic Logical Inference)とは三段論法を行うこと

 推論規則は、人間が書く
– LLMの助けを借りる

 論理推論の特徴
 精密
 問題の原因を明らかにできる
 問題の解消は、推論規則の追加/修正
 説明のできるAI

 ソクラテスは人間である
 人間は死ぬ

知識(推論規則)

論理推論AIの計算過程
 1) ソクラテス : 人間
 2) 人間 → 死ぬ
 3)∴ソクラテス→死ぬ
 ということを見つけることが論理推論
上記を、論理推論 1回と 数える。
三段論法の1回=論理推論の1回

「ソクラテスは死ぬか?」
を問い合わせ

AI
Query

推論規則(知識ベース)
参照

「死にます」



多重分岐(レジスタ間接レジスタ指定) 新命令
● Python,ruby(native code),Prolog,Lispが速くなる

● branch_reg_indirect  IREG

      pc ← pc + xreg[IREG]    ; xreg[n]は、n番の汎用レジスタ

       ※Branch_and_Link機能付き, callにもなる

● jump_reg_indirect  IREG1,REG2

       pc ← xreg[IREG1] + REG2

       ※Branch_and_Link機能付き, JALにもなる

● mov_reg_regindirect dst,ireg

     dst ← xreg[ireg]

● mov_regindirect_reg ireg,src

     xreg[ireg]←src

0x400xxx

0x400100

0x400yyy

1

x0

x1

x2

x3

x4

IREGがx3(内容=1)のとき

X1が指される。

参照の場合、実効値0x400100

【特許第7421850号】
   登録日【2024年1月17日】



mov_reg_regindirect, branch_reg_indirect 追加後のパイプライン

2022/JUL/15 a

このパスを追加

俺SoC LSIでは、追加したパスは、クリティカル・パスにはならない



● GNU-Prolog  のWAM 
コードでは、

switch_on_term  で 1  つめの
arity の型
  変数/アトム/整数/リス
ト/構造体
によって分岐する
● 分岐先で各arityの値を
チェックする

foo(1, a, X) :- bar(1, X).
foo(a, [c,d], X) :- bar(2, X).
foo([a,b], c(d), X) :- bar(3, 
X).
foo(a(b), 1, X) :- bar(4, X).

GNU-PrologのWAM(抽象マシン)コード
predicate(foo/
3,1,static,private,monofile,global,[
    switch_on_term(1,4,2,6,8),

label(1),
    try_me_else(3),

label(2),
    get_integer(1,0),
    get_atom(a,1),
    put_value(x(2),1),
    put_integer(1,0),
    execute(bar/2),

label(3),
    retry_me_else(5),

label(4),
    get_atom(a,0),
    get_list(1),
    unify_atom(c),
    unify_list,
    unify_atom(d),
    unify_nil,
    put_value(x(2),1),
    put_integer(2,0),
    execute(bar/2),

label(5),
    retry_me_else(7),

label(6),
    get_list(0),
    unify_atom(a),
    unify_list,
    unify_atom(b),
    unify_nil,
(以下略)

Pl_Switch_On_Term()の内容
CodePtr FC
Pl_Switch_On_Term(CodePtr c_var,
               CodePtr c_atm, CodePtr c_int,
               CodePtr c_lst, CodePtr c_stc)
{
  WamWord word, tag_mask;
  CodePtr codep;

  DEREF(A(0), word, tag_mask);
  A(0) = word;

  if (tag_mask == TAG_INT_MASK)
    codep = c_int;
  else if (tag_mask == TAG_ATM_MASK)
    codep = c_atm;
  else if (tag_mask == TAG_LST_MASK)
    codep = c_lst;
  else if (tag_mask == TAG_STC_MASK)
    codep = c_stc;
  else                          /* REF or FDV */
    codep = c_var;

  return (codep) ? codep : ALTB(B);
}

 ランタイム関数
Pl_Switch_On_
Term() では、
1つめのarityで
あるA(0)のタグ
(下位3ビット)
によって、
次に実行する
分岐先を返すよ
うになっている



RISC-V 64bit Gnu Prolog コンパイルド・バイナリとその高速化
gplcでコンパイルした native codeをobjdump -d の一部

00000000000096b8 <X0_ap__a3>:

    96b8: 00000517     auipc a0,0x0

    96bc: 02050513     addi a0,a0,32 # 96d8 <X0_ap__a3+0x20>

    96c0: 00000597     auipc a1,0x0

    96c4: 02458593     addi a1,a1,36 # 96e4 <X0_ap__a3+0x2c>

    96c8: 00000617     auipc a2,0x0

    96cc: 05460613     addi a2,a2,84 # 971c <X0_ap__a3+0x64>

    96d0: 014900ef     jal ra,996e4 <Pl_Switch_On_Term_Var_Atm_Lst>

    96d4: 00050067     jr a0

    96d8: 00000517     auipc a0,0x0

    96dc: 04050513     addi a0,a0,64 # 9718 <X0_ap__a3+0x60>

    976c: 00ab3823     sd a0,16(s6)

    9770: f49ff06f     j 96b8 <X0_ap__a3>

    9774: 00000013     nop

%%% Prologソース
ap([],Y,Y).
ap([A|X],Y,[A|Z]) :- ap(X,Y,Z).
%% ap(X,Y,[a,b,c]).

この2行の部分を、
あるレジスタ中の値で指定された、
別なレジスタ中の値を番地として、
jumpするようなコードに変更する

(コンパイラが新命令を使用するように変更)
新命令「 branch_reg_indirect  %rax 」

で置き換えて、高速化

レジスタ間接によるレジスタ指定ができる新命
令を追加
特にジャンプ命令
ロード命令、ストア命令
例えば、WAM  コード switch_on_term をアセンブ
リ・コードにする場合に、型を示すタグ(3bit)に
よって、レジスタ間接によって指定されたレジス
タの値(アドレス)にジャンプすると高速になる
すなわち

        jal    ra,Pl_Switch_On_Term@PLT ;サブルーチン・コール
なので、とても遅い

        jr     a0

を、下記1命令で置き換えて、高速化
      branch_reg_indirect  IREG  ;  pc ← pc + xreg[IREG]

Lisp, Haskellなど高級な言語は同様に高速化可能だろう
(動的に型チェックをする言語の実行系)

多重分岐の飛び先アドレスを
レジスタにセット

mailto:Pl_Switch_On_Term@PLT


 加速命令使用の実測値

テスト・プログラム 新命令
不使用(ms) N

 加速命令
使用(ms) U

加速率(%)
 (N-U)/N*100

備考

queens.pl (16queen)
 (10回繰り返し)

61,638 58,930 4.39 みんな大好き
8queen

cal.pl (10回繰り返し) 11,026 10,827 1.80 万年カレンダ
数値計算

ham.pl (10回繰り返し) 52,591 52,324 0.51 ???

● とてもシンプルな機構(線を引っ張るだけ)
● 4%以上の加速が得られているので、十分 効いている
● コスパ良し

実行時間

● gplc(GNU Prologコンパイラ)にオプション --emit-regind を新設
● 測定環境

– FPGA(Nexys Video)に松竹V CPUコア, 命令コード・メモリ=256KB, データ・メモリ=1MB
– Clock: 50MHz
– ベア・メタル用runtimeルーチンを用意



付録

ジャンプ命令に基づくパイプライン処理を
制御するプロセッサ及びプログラム

(東京エレクトロンと竹岡の共同特許)

特許【第7506718号】
登録日　【2024年6月18日】



ジャンプ命令に基づくパイプライン処理を
制御するプロセッサ及びプログラム
(東京エレクトロンと竹岡の共同特許)

【第7506718号】
登録日　【2024年6月18日】



ごく普通のディスパッチ方法(既存ソフトウェア)
ld a1,[a0]  ;a0レジスタが指している番地から、値(ジャンプ先)をa1レジスタにロード
jump a1  ;a1レジスタの内容アドレスへジャンプ (プログラム・カウンタへa1の内容を転送)

ルーチンAdr

type0sub+1番地

type1sub+1番地

Type0:

Type1:

a0

● a0レジスタの内容で、ディスパッチ・テーブルを引き
● そのテーブルの内容(ルーチンの先頭の命令)を CPU コアの各 部分にセットする



特許出願アイデア1:ディスパッチ高速化1
● fast1_multi_branch a0 命令を考案
● ディスパッチ・テーブルに、分岐先アドレスと共に、分岐先(次に実行する)命令も置いておく

● 命令フェッチが高速になる

ルーチンAdr 先頭命令

type0sub+1番地 先頭命令

type1sub+1番地 先頭命令

:

:

Type0:

Type1:

a0

● a0レジスタの内容で、ディスパッチ・テーブルを引き
● そのテーブルの内容(ルーチンの先頭の命令)を CPU コアの各 部分にセットする
● このテーブルは、CPUコアの内部にもつ。比較的 小容量で高速



特許出願アイデア2:高速ディスパッチ命令2
● fast2_multi_branch a0  命令を考案
● ディスパッチ・テーブルに、分岐先アドレスと共に、

● 分岐先(次に実行する)命令のデコード済み情報(CPUコア内情報)と
● 分岐先の次の命令(次の次に実行する)命令も置いておく

● ※最初の命令のフェッチとデコードを省略する。2番目の命令フェッチを省略する

ルーチンAdr 2番目命令 先頭命令のデコード済み
コア内部情報

type0sub+2番地 2番目命令 ShiftRight a0,a0,3をデ
コードした情報ビット列

xxx+2番地 2番目命令 tag_add a0,a0,10をデ
コードした情報ビット列

:

:

Type0:

Type1:

a0

● a0レジスタの内容で、ディスパッチ・テーブルを引き
● そのテーブルの内容を CPU コアの各 部分にセットする
● このテーブルは、CPUコアの内部にもつ。比較的 小容量で高速



以上

AI    もやってます 「ごまめ 」
健康のためのAI

お問い合わせ
https://www.axe.bz/

mail to: eigyo@axe.bz

®

https://www.axe.bz/


付録



オレ達のCPU「松竹V(しょうちくぶい)」

機械学習AI 加速用 ベクトル計算ユニット
・8bit float,4SIMD,ベクトル・パイプライン
・動的クロック切り替え機構で500KHz〜320MHzで、動作
  ※最高 480MHz (動的クロック切り替え非対応)
・Vector ExtensionのImplementation-defined Constant Parameters(実装
固有パラメータ)
ELEN:32 ,VLEN: 1024

・ベクトルレジスタ
   1024ビットのベクトルレジスタ×32個
   ベクトルレジスタはすべてのタスクで共有(実体は1つ)
機械学習AIの推論に最適な8bit浮動小数点演算をベクトル処理
● エッジ機器内での、AI処理
        ↓
● データ通信量の削減
・分散処理による、全体の負荷の分散

エッジデバイスでも
AI処理を!

32ビットのスカラ浮動小数点数レジスタ
(Fレジスタ): 32個も備える



8bit  浮動小数点ベクトル演算命令

● AX1001の8bit浮動小数点数のフォーマット

– 仮数部:3bit, 符号:1bit 指数部:4bit, 指数バイアス=7



オレ達のCPU「松竹V(しょうちくぶい)」
● 省電力、省メモリ、堅牢かつ高速
● ロボットの部品モジュールがローコストで簡単に作れる

論理推論 AI加速 機構をRISC-Vコアに追加
● 特許取得済み
● 第7506718号,2024年6月18日 (東京エレクトロンと共同特許)

● GnuPrologのコンパイルド・バイナリを加速
● 詳細は、付録参照のこと

エッジデバイスでも
大脳的処理を!



その他の
カスタム命令



テストプログラム名 CPUクロック周波数・消費電力(mW)

- - 320MHz 1.79MHz

- - 実測(1.0v)mA 実測(3.3v)mA 1.0V+3.3v計
(mW)

実測(1.0v)mA 実測(3.3v)mA 1.0V+3.3v計
(mW)

メモリテスト 177.0 5.0 193.5 10.0 0.0 10.0

有意義なことはしていない 113.0 11.0 149.3 30 10 63.0

Laxer AX1001 消費電力概要

参考 ※実際には、DC-DCコン
バータなどで損失が出るの
で、仮の理想値

電池容量
(mW換算)

320MHz(時間) 1.79MHz(時間)

単1  形アルカリ電池容量約
10,000 mAh/1本,
3本4.5v使用

135,000 697.67 13,500.00

単3  形アルカリ電池容量約
1,000～2,900mAh/1本,
3本4.5v使用

39,150 202.33 3,915.00

コイン電池CR2450 (3V) 
620mAh,  2個(6V)使用
 (※最大電流30mA/1個)

7,440  (38.45
※電流が足りない)

744.00



付録
レジスタ間接レジスタ指定



参考:高速化対象: GNU-Prologの80x86(64bit)版オブジェクト(アセンブリ・コード)

● GNU-Prolog のアセンブリコードでは、WAM(Prolog  中間仮想マシン)
のswitch_on_termに対応するランタイム関数Pl_Switch_On_Term() を
呼んでいる

● その返り値でジャンプしている
ここで、

● レジスタ間接によるレジスタ指定ができる新命令を追加
○ 特にジャンプ命令

○ ロード命令、ストア命令
● 例えば、WAM  コード switch_on_term をアセンブリ・コードにする場
合に、型を示すタグ(3bit)によって、レジスタ間接によって指定された
レジスタの値(アドレス)にジャンプすると高速になる

● すなわち
        call    Pl_Switch_On_Term@PLT ;サブルーチン・コールなので、とても遅い
        jmp     *%rax
     を、下記1命令で置き換えて、高速化

      branch_reg_indirect  IREG  ;  pc ← pc + xreg[IREG]

X0_foo__a3:
        movq    Lpred1_1@GOTPCREL(%rip),%rdi
        movq    Lpred1_4@GOTPCREL(%rip),%rsi
        movq    Lpred1_2@GOTPCREL(%rip),%rdx
        movq    Lpred1_6@GOTPCREL(%rip),%rcx
        movq    Lpred1_8@GOTPCREL(%rip),%r8
        call    Pl_Switch_On_Term@PLT
        jmp     *%rax

Lpred1_1:
        movq    Lpred1_3@GOTPCREL(%rip),%rdi
        call    Pl_Create_Choice_Point3@PLT

Lpred1_2:
        movq    $15,%rdi
        movq    0(%r12),%rsi
        call    Pl_Get_Integer_Tagged@PLT
        test    %rax,%rax
        je      fail
        (略)
        jmp     X0_bar__a2@PLT

Lpred1_3:
        movq    Lpred1_5@GOTPCREL(%rip),%rdi
        call    Pl_Update_Choice_Point3@PLT

Lpred1_4:
        movq    ta@GOTPCREL(%rip),%rdi
        movq    0(%rdi),%rdi
        movq    0(%r12),%rsi
        call    Pl_Get_Atom_Tagged@PLT
        test    %rax,%rax
        je      fail
        (略)
        jmp     X0_bar__a2@PLT

Lpred1_5:
        movq    Lpred1_7@GOTPCREL(%rip),%rdi
        call    Pl_Update_Choice_Point3@PLT

Lpred1_6:
        movq    0(%r12),%rdi
        call    Pl_Get_List@PLT
        test    %rax,%rax
        je      fail
(以下略)

この2行の部分を、
あるレジスタ中の値で指定された、
別なレジスタ中の値を番地として、
jumpするようなコードに変更する

(コンパイラが新命令を使用するように変更)
 新命令「 branch_reg_indirect  %rax 」
で置き換えて、高速化

mailto:Pl_Switch_On_Term@PLT


mov_reg_regindirect (レジスタ間接指定によるデータ・レジスタ指定,参照)

● x[rd] = x[x[rs1]]
● I-type
● 暫定的に、opcode=0b0001011 (custom-0), funct3=0b000, imm=0と

した
● フォワーディング部の修正

○ 次ページ参照

● branch_reg_indirectなどjump系命令も、同様
○ 書き込みレジスタがpcになるだけ



mov_regindirect_reg(レジスタ間接指定によるデータ・レジスタ指定,ストア)

● x[x[rd]] = x[rs1]
● I-type
● 暫定的に、opcode=0b0001011 (custom-0), funct3=0b001, imm=0とし

た
● 変更点

○ Id stageではrdをrs2として扱う
■ rs2のフォワーディング部を利用するため

○ Ex stageではフォワーディング後のrs2をExMa_rdに書き込む
○ 次ページ参照

● mov_reg_regindirectに追加で実装した
○ Fmaxのさらなる低下はなし



mov_reg_regindirect・mov_regindirect_reg(ストア)追加後のパイプライン

2022/JUL/15 b

このパスを追加

俺SoC LSIでは、追加したパスは、クリティカル・パスにはならない



以上
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