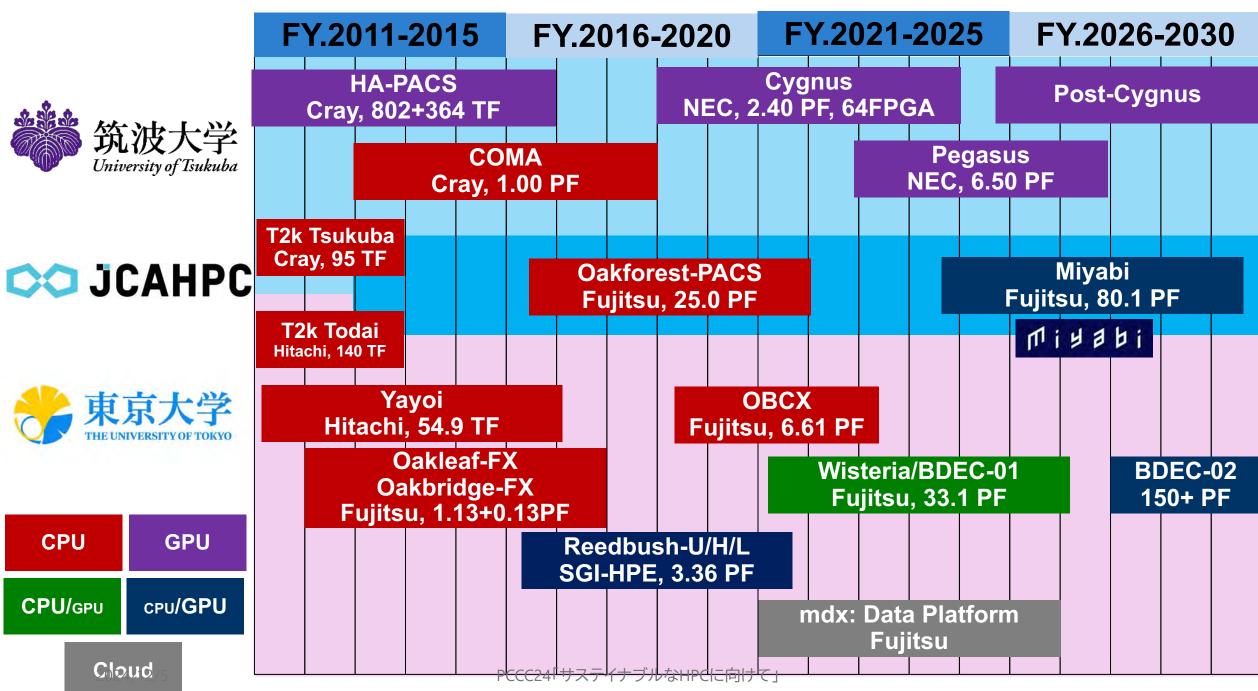
最先端共同HPC基盤施設の新スパコンシステム Miyabiの運用開始に向けて / 東大情報基盤センターの目指す 『計算・データ・学習』とデータ利活用を融合した 革新的なスーパーコンピューティング

塙 敏博

最先端共同HPC基盤施設 (JCAHPC)

東京大学 情報基盤センター 筑波大学 計算科学研究センター(客員)

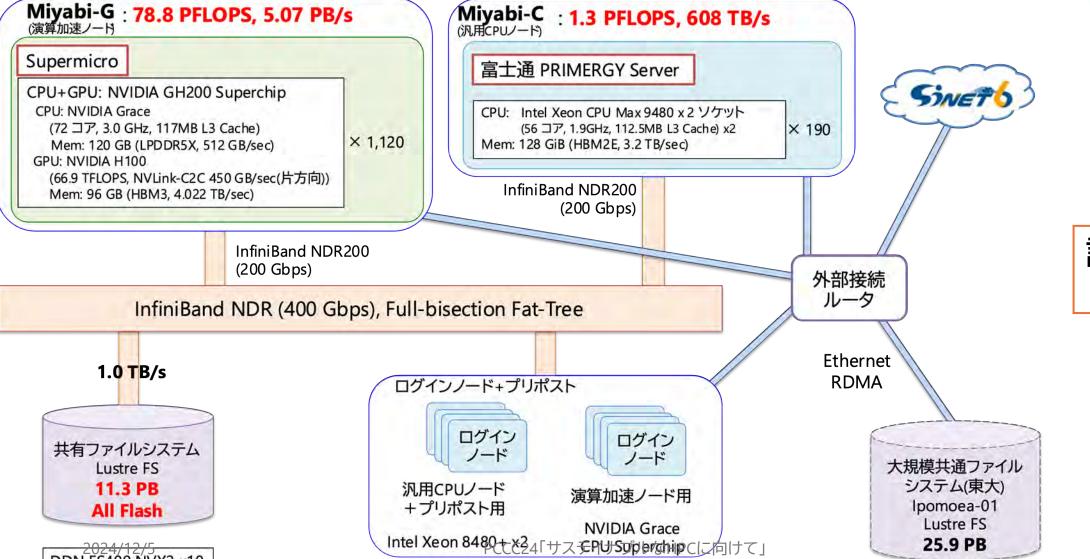
最先端共同HPC基盤施設


http://jcahpc.jp/eng/index.html

- 2013年創立
 - JCAHPC (Joint Center for Advanced High Performance Computing)
 - 筑波大学計算科学研究センター・東京大学情報基盤センター
 - 最先端計算科学の推進
 - 大規模システムの設計・導入・運用を共同で実施する我が 国でも初の試み:より大規模なシステムを効率的に導入可 能
- Oakforest-PACS(OFP):JCAHPC第一号機
 - Intel Xeon Phi 8,208ノード, 25PF(富士通)
 - 2016年11月時点でTop500の6位(国内1位)
 - ・ 2022年3月末で退役
 - 「京」の退役後,「富岳」登場までの2019・2020年度は事実 上の「National Flagship System」としての役割を担う
- OFP-II(OFP後継機)へ向けた試み

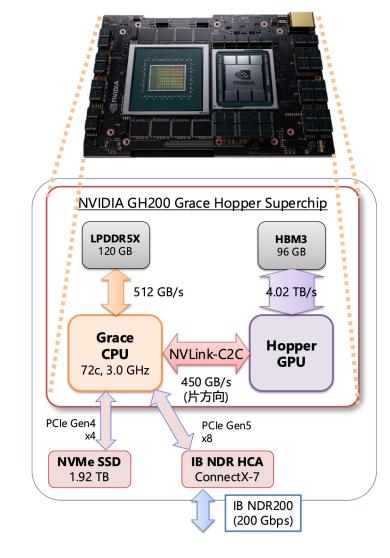
Miyabiの概要 (1/3) (1/2) 2025年1月運用開始 80.1 PFLOPS

DDN ES400 NVX2 x10



25.9 PB

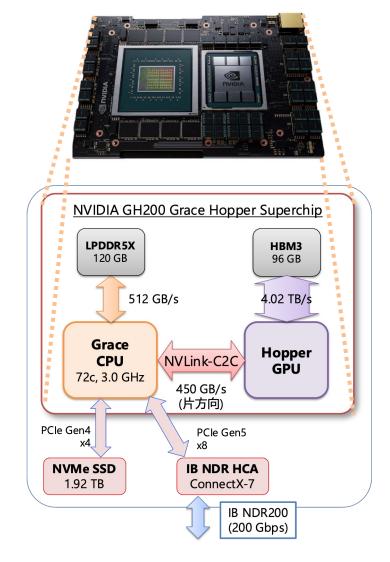
筑波大学 University of Tsukuba



設置•運用: 富士通

Miyabiの概要 (2/3)

- ・ Miyabi-G: 演算加速ノード: NVIDIA GH200
 - 計算ノード: NVIDIA GH200 Grace-Hopper Superchip
 - Grace: 72c, 3.45 TF, 120 GB, 512 GB/sec (LPDDR5X)
 - H100: 66.9 TF DP-Tensor Core, 96 GB, 4,022 GB/sec (HBM3)
 - CPU-GPU間はキャッシュコヒーレント
 - NVMe SSD for each GPU: 1.9TB, 8.0GB/sec, GPUDirect Storage
 - 合計 (CPU+GPUの合計値)
 - ・ 1,120 ノード, 78.8 PF, 5.07 PB/sec, IB-NDR 200
- ・ <u>Miyabi-C: 汎用CPUノード: Intel Xeon Max 9480</u> (SPR)
 - 計算ノード: Intel Xeon Max 9480 (1.9 GHz, 56c) x 2
 - 6.8 TF, 128 GiB, 3,200 GB/sec (<u>HBM2e only</u>)
 - 合計
 - ・ 190 ノード, 1.3 PF, IB-NDR 200
 - 372 TB/sec for STREAM Triad (Peak: 608 TB/sec)



Miyabiの概要 (2/3)

Supermicro ARS-111GL-DNHR-LCC
 – 1U 2ノード、直接水冷

Miyabiの概要 (3/3)

- ファイルシステム: DDN EXAScalar, Lustre FS
 - 11.3 PB (NVMe SSD) 1.0TB/sec, "Ipomoea-01" (26 PB) も利用可能
- Miyabi-G/C の全ノードはフルバイセクションバンド幅Fat Treeで接続
 - $-(400Gbps/8)\times(32\times20+16\times1)=32.8$ TB/sec
- 2025年1月運用開始、Miyabi-G/C間の通信は h3-Open-SYS/WaitIO により実現

IB-NDR (400Gbps)

IB-NDR200(200)

Miyabi-G NVIDIA GH200 1,120 78.8 PF, 5.07 PB/sec

Miyabi-C Intel Xeon Max (HBM2e) 2 x 190 1.3 PF, 608 TB/sec IB-HDR (200)

File System DDN EXA Scaler 11.3 PB, 1.0TB/sec

Ipomoea-01 大規模共通ストレージ

Miyabi(OFP-II) 仕様まとめ

	Miyabi-G (演算加速ノード)	Miyabi-C (汎用CPUノード)	
理論ピーク性能	78.8 PFLOPS	1.29 PFLOPS	
ノード数	1,120	190	
合計メモリ容量	241.9 TB	23.75 TiB	
合計メモリバンド幅	5.07 PB/sec	608 TB/sec	
インタコネクト トポロジ	InfiniBand NDR200 (200 Gbps Full-bisection Fat Tree		

共	有ファイルシステム	Lustre FS
М	サーバ	DDN ES400NVX2
D	サーバ数(VM)	1 (4)
S	inode数	аррх. 23.5 В
	サーバ	DDN ES400NVX2
O S	サーバ数	10 set
S	容量	11.3 PB (All Flash)
	理論バンド幅	1.0 TB/sec

項目		Miyabi-G (演算加速ノード)	Miyabi-C (汎用CPUノード)	
	サーバ	Supermicro ARS-111GL-DNHR-LCC	FUJITSU Server PRIMERGY CX2550 M7	
	プロセッサ名	NVIDIA GH200 Grace Hopper Superchip, NVIDIA Grace	Intel Xeon CPU Max 9480 (Sapphire Rapids)	
	プロセッサ数 (コア数)	1 (72)	2 (56+56)	
	周波数	3.0 GHz	1.9 GHz	
P U	理論演算性能	3.456 TFLOPS	6.8096 TFLOPS	
U	メモリ	LPDDR5X	HBM2E	
	メモリ容量	120 GB	128 GiB	
	メモリ帯域幅	512 GB/s	3.2 TB/s	
	プロセッサ名	NVIDIA Hopper		
	プロセッサ数	1		
	SM数	132		
G	理論演算性能	66.9 TFLOPS		
P	メモリ	HBM3	-	
U	メモリ容量	96 GB		
	メモリ帯域幅	4.02 TB/s		
	CPU-GPU間接続	NVLink-C2C 450 GB/sec (片方向) キャッシュコヒーレント		
サスラ	VMe SSD テイナブルなHPCに向けて」	1.92 TB, PCle Gen4 x4	-	

PCCC24[+

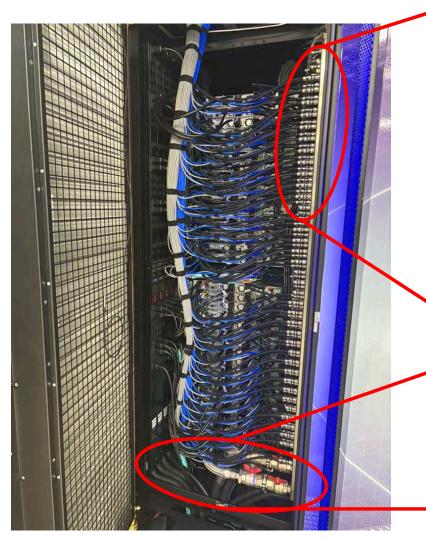
GPU移植・移行の計画

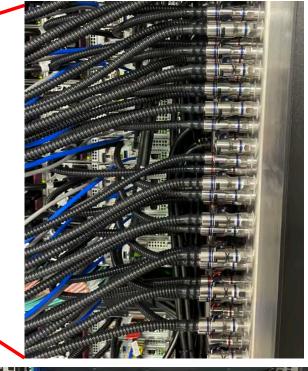
- NVIDIA Japanの協力
- 3,000人以上のOFP利用者:2つの形態
- 「自己移植(Self Porting)」:様々なオプション
 - 1週間のハッカソン(ミニキャンプ), 3ヶ月に1回, オンライン・ハイブリッド, Slack併用
 - 毎月開催される「相談会」(Zoom, 非ユーザーも自由に参加できる)
 - 素晴らしく充実した「移行ポータルサイト」,各種講習会
 - https://jcahpc.github.io/gpu_porting/
- ・「サポート移植(Surpported Porting)」, 2022年10月開始
 - 多くのユーザーを有するコミュニティコード(19種類,次頁), OpenFOAM(NVIDIA)
 - 外注のための予算も確保(富士通が担当する予定)
 - 「サポート移植」グループメンバー(主に若手)はハッカソン・相談会にも積極的に参加
- ・ 基本的にOpenACC/StdPar(Standard Parallelism)推奨

Category	Name (Organizations)	Target, Method etc.	Language
	FrontISTR (U.Tokyo)	Solid Mechanics, FEM	Fortran
Engineering	FrontFlow/blue (FFB) (U.Tokyo)	CFD, FEM	Fortran
Engineering (5)	FrontFlow/red (AFFr) (Advanced Soft)	CFD, FVM	Fortran
(3)	FFX (U.Tokyo)	CFD, Lattice Boltzmann Method (LBM)	Fortran
	CUBE (Kobe U./RIKEN)	CFD, Hierarchical Cartesian Grid	Fortran
Pionbysics	ABINIT-MP (Rikkyo U.)	Drug Discovery etc., FMO	Fortran
Biophysics (3)	UT-Heart (UT Heart, U.Tokyo)	Heart Simulation, FEM etc.	Fortran, C
(3)	Lynx (Simula, U.Tokyo)	Cardiac Electrophysiology, FVM	С
Dhysics	MUTSU/iHallMHD3D (NIFS)	Turbulent MHD, FFT	Fortran
Physics (3)	Nucl_TDDFT (Tokyo Tech)	Nuclear Physics, Time Dependent DFT	Fortran
(5)	Athena++ (Tohoku U. etc.)	Astrophysics/MHD, FVM/AMR	C++
Climate/	SCALE (RIKEN)	Climate/Weather, FVM	Fortran
Weather/	NICAM (U.Tokyo, RIKEN, NIES)	Global Climate, FVM	Fortran
Ocean	MIROC-GCM (AORI/U.Tokyo)	Atmospheric Science, FFT etc.	Fortran77
(4)	Kinaco (AORI/U.Tokyo)	Ocean Science, FDM	Fortran
	OpenSWPC (ERI/U.Tokyo)	Earthquake Wave Propagation, FDM	Fortran
Earthquake	SPECFEM3D (Kyoto U.)	Earthquake Simulations, Spectral FEM	Fortran
(4)	hbi_hacapk (JAMSTEC, U.Tokyo)	Earthquake Simulations, H-Matrix	Fortran
	sse_3d (NIED)	Earthquake Science, BEM (CUDA Fortran) サスティナブルなHPCに向けて」	Fortran

2024/12/5

山川田田川


2024/12/5


Miyabi-Gのラック内冷却機器

マニフォールド・ 水冷パイプ

リアドアパネル内

In Rack CDU(ラック毎)

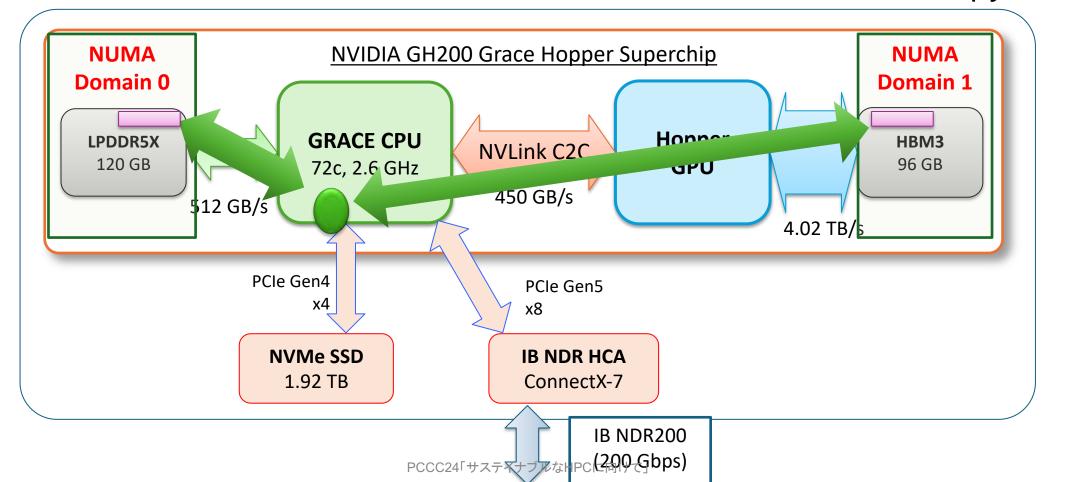
64th TOP500 List (Nov, 2024)

R_{peak}: Peak Performance (TFLOPS), Power: kW

		, repeak real results				<u> </u>	<u> </u>
	Site	Computer/Year Vendor	Cores	R _{max} (PFLOPS)	R _{peak} (PFLOPS)	GFLOPS/W	Power (kW)
1	El Capitan, 2024, USA DOE/NNSA/LLNL	HPE Cray EX255a, AMD 4th Gen EPYC 24C 1.8GHz, AMD Instinct MI300A, Slingshot-11, TOSS	11,039,616	1,742.00 (=1.742 EF)	2,746.38 63.4 %	58.99	29,581
2	Frontier, 2021, USA DOE/SC/Oak Ridge National Laboratory	HPE Cray EX235a, AMD Optimized 3 rd Gen. EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11	9,066,176	1.353.00	2,055.72 65.8 %	54.98	24,607
3	Aurora, 2023, USA DOE/SC/Argonne National Laboratory	HPE Cray EX - Intel Exascale Compute Blade, Xeon CPU Max 9470 52C 2.4GHz, Intel Data Center GPU Max, Slingshot-11, Intel	9,264,128	1,012.00	1,980.01 51.1 %	26.15	38,698
4	Eagle, 2023, USA Microsoft	Microsoft NDv5, Xeon Platinum 8480C 48C 2GHz, NVIDIA H100, NVIDIA Infiniband NDR	2,073,600	561.20	846.84 66.3 %		
5	HPC 6, 2024, Italy Eni S.p.A.	HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, RHEL 8.9	3,143,520	477.90	606.97 66.3 %	56.48	8,461
6	Fugaku, 2020, Japan R-CCS, RIKEN	Fujitsu PRIMEHPC FX1000, Fujitsu A64FX 48C 2.2GHz, Tofu-D	7,630,848	442.01	537.21 82.3 %	14.78	29,899
7	Alps, 2024, Switzerland Swiss Natl. SC Centre (CSCS)	HPE Cray EX254n, NVIDIA Grace 72C 3.1GHz, NVIDIA GH200 Superchip, Slingshot-11	2,121,600	434.90	574.84 75.7 %	61.05	7,124
8	LUMI, 2023, Finland EuroHPC/CSC	HPE Cray EX235a, AMD Optimized 3 rd Gen. EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11	2,752,704	379.70	531.51 71.4 %	53.43	7,107
9	Leonard, 2023, Italy EuroHPC/Cineca	BullSequana XH2000, Xeon Platinum 8358 32C 2.6GHz, NVIDIA A100 SXM4 64GB, Quad-rail NVIDIA HDR100	1,824,768	241.20	306.31 78.7 %	32.19	7,494
10	Tuolumne, 2024, USA DOE/NNSA/LLNL	HPE Cray EX255a, AMD 4th Gen EPYC 24C 1.8GHz, AMD Instinct MI300A, Slingshot-11, TOSS	1,161,216	208.10	288.88 72.0 %	61.45	3,387
13	Venado, 2024, USA DOE/NNSA/LANL	HPE Cray EX254n, NVIDIA Grace 72C 3.1GHz, NVIDIA GH200 Superchip, Slingshot-11	481,440	98.51	130.44 75.5 %	59.29	1,662
16	CHIE-3, 2024, Japan SoftBank, Corp.	NVIDIA DGX H100, Xeon Platinum 8480C 56C 2GHz, NVIDIA H100, Infiniband NDR400, Ubuntu 22.04.4 LTS	163.200	91.94	138.32 66.5 %		
17	CHIE-2, 2024, Japan SoftBank, Corp.	NVIDIA DGX H100, Xeon Platinum 8480C 56C 2GHz, NVIDIA H100, Infiniband NDR400, Ubuntu 22.04.4 LTS	163.200	89.78	138.32 64.9 %		
18	JETI, 2024, Germany EuroHPC/FZJ	BullSequana XH3000, Grace Hopper Superchip 72C 3GHz, NVIDIA GH200 Superchip, Quad-Rail NVIDIA InfiniBand NDR200, RedHat Linux, Modular OS	391,680	83.14	94.00 88.4 %	63.43	1,311
22	CEA-HE, 2024, France CEA	BullSequana XH3000, Grace Hopper Superchip 72C 3GHz, NVIDIA GH200 Superchip, Quad-Rail BXI v2, EVIDEN	389,232	64.32	103.48 62.2 %	52.17	1,233
28	Miyabi-G, 2024, Japan JCAHPC	Fujitsu, Supermicro ARS 111GL DNHR LCC, Grace Hopper Superchip 72C 3GHz, Infiniband NDR200, Rocky Linux	80,640	46.80	72.80 64.3 %	47.59	983
36	Science Tokyo	HPE Cray XD665, AMD EPYC 9654 96C 2.4GHz, NVIDIA H100 SXM5 94 GB, Infiniband NDR200	172,800	39.62	61.60 64.3 %	48.55	816
58	Wisteria/BDEC-01 (Odyssey), 2021, Japan U.Tokyo	Fujitsu PRIMEHPC FX1000, A64FX 48C 2.2GHz, Tofu D	368,640	22.12	25.95 85.2 %	15.07	1,468
	,						2024/12/5

Green 500 Ranking (Nov. 2024)

	Green 300 Kanking (1404, 2024)							
	TOP 500 Rank	System	Accelerator	Cores	HPL Rmax (Pflop/s)	Power (kW)	GFLOPS/W	Level
1	224	JEDI, EuroHPC/Julich, Germany	NVIDIA GH200	19,584	4.50	67	72.733	1
2	122	ROMEO-2025, ROMEO HPC Center - Champagne-Ardenne, France	NVIDIA GH200	47,328	9.86	160	70.912	1
3	442	Adastra2, GENCI-CINES, France	AMD Instrinct MI300A	16,128	2.53	37	69.098	1
4	155	Isambard-Al phase1, U. Bristol, UK	NVIDIA GH200	34,272	7.42	117	68.835	1
5	51	Capella, TU Dresden ZIH, Germany	NVIDIA H100 94GB	85,248	24.06	445	68.053	3
6	18	JETI, EuroHPC/Julich, Germany	NVIDIA GH200	391,680	83.14	1,311	67.963	1
7	69	Helios GPU, Cyfronet, Poland	NVIDIA GH200	89,760	19.14	317	66.948	2
8	371	Henri, Flatiron Institute, USA	NVIDIA H100 80GB	8,288	2.88	44	65.396	?
9	340	HoreKa-Teal, KIT, Germany	NVIDIA H100 94GB SXM5	13,616	3.12	50	62.964	1
10	49	rzAdams, DoE LLNL, US	AMD Instrinct MI300A	129,024	24.38	388	62.803	2
16	13	Venado, DoE LANL, US	NVIDIA GH200	481,440	98.51	1,662	59.287	1
30	36	TSUBAME 4.0, Science Tokyo	NVIDIA H100 94GB SXM5	172,800	39.62	816	48.565	3
33	28	Miyabi-G, JCAHPC	NVIDIA GH200	221,952	46.80	983	47.588	3
48	230	Pegasus, University of Tsukuba, Japan	NVIDIA H100 80GB	27,000	4.34	130	41.123	2
49	191	Wisteria/BDEC-01 (Aquarius), The University of Tokyo, Japan	NVIDIA A100 40GB	42,120	4.425	183	24.06	2


HPCG Ranking (Nov, 2024)

	Computer	Cores	HPL Rmax (Pflop/s)	TOP500 Rank	HPCG (Pflop/s)
1	Fugaku	7,630,848	442.01	4	16.00
2	Frontier	8,699,904	1,206.00	1	14.05
3	Aurora	9,264,128	1,012.00	2	5.61
4	LUMI	2,752,704	379.70	5	4.59
5	Alps	2,121,600	434.90	7	3.67
6	Leonardo	1,824,768	241.20	9	3.11
7	Perlmutter	888,832	79.23	19	1.91
8	Sierra	1,572,480	94.64	14	1.80
9	Selene	555,520	63.46	23	1.62
10	JUWELS Booster	449,228	44.12	33	1.28
12	AOBA-S	64,512	17.22	76	1.09
17	Wisteria/Odyssey	348,640	22.12	58	0.818
19	ES4-SX-Aurora Tsubasa	43,776	9.99	119	0.748
21	Miyabi-G	221,952	46.80	28	0.645

2024/12/5

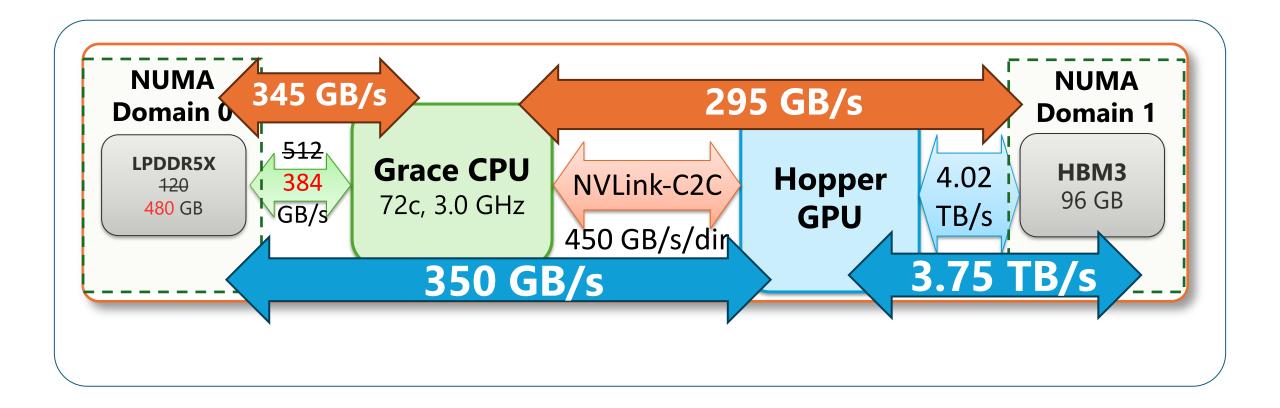

Graceからのメモリビュー

- NUMAとして見える
 - First Touchが大事
- ・ 従来のCUDAのメモリモデルも使えて 普通に動く+転送が速い
 - cudaMalloc() + cudaMemcpy()

Hopperからのメモリビュー

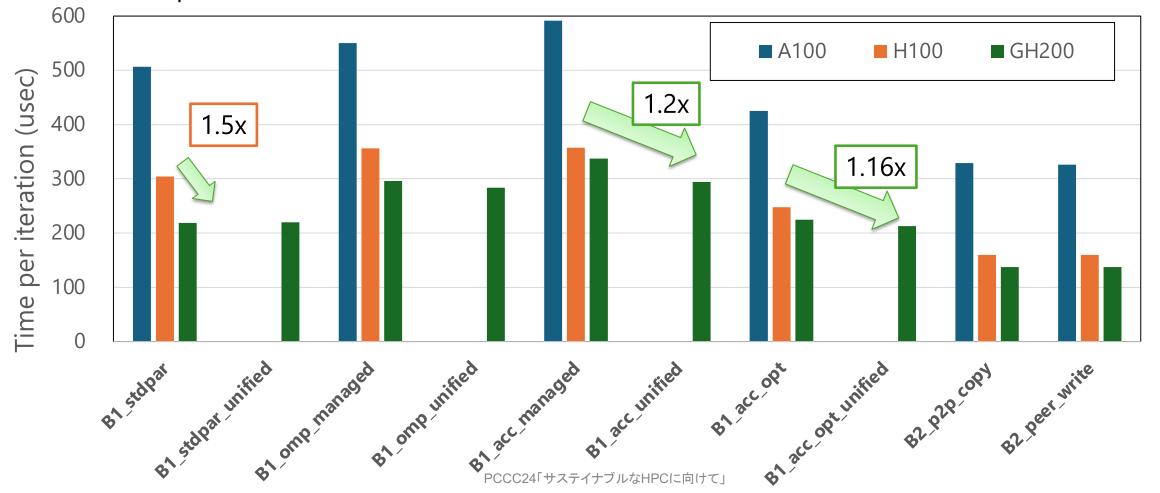
- Graceでのアドレスを使って直接アクセス可能
- ・ 従来のCUDAのコードはH100とほぼ挙動は変わらない(メモリBW比相当)

nvbandwidth


- https://github.com/NVIDIA/nvbandwidth
 - -8 GB (-b 8192)
- Host To Device BW (Copy kernel)
 Device To Host Latency (Copy - host to device memcpy sm
- Device To Host BW (Copy kernel)
 - device_to_host_memcpy_sm

kernei	<i>)</i>			
boct	dovisco	1-+	C 100	

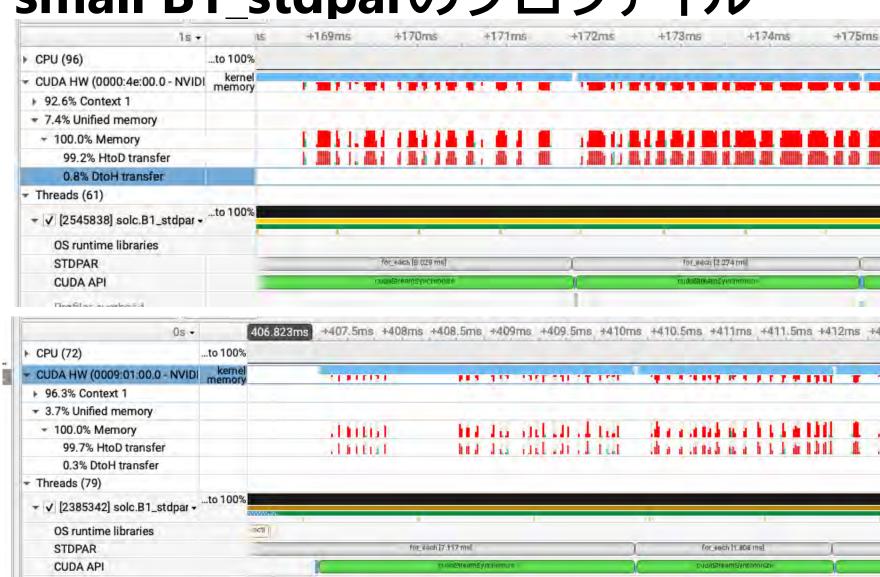
- nost_device_tatency sm


	Memcpy (H→D) (GB/sec)	Memcpy (D→H) (GB/sec)	Latency (D⇔H, single dir) (nsec)
GH200	368.40	351.34	769.08
SPR+H100 SXM5	36.82	39.93	1089.60

メモリバンド幅まとめ

Poisson 3D: small (128x128x128)

- C言語、オリジナルは OpenMP並列化
 - 小サイズでは、managed →unifiedの効果が高い
 - stdparがGH200で性能が高い


Poisson 3D small B1_stdparのプロファイル

• 上: H100 SXM5

下: GH200

- 赤: データ転送

- データ転送の総量は さほど変わらない
- NVLink-C2C vs PCle は約7~10倍の性能
- 64Kページ@GH200 の効果
 - ページフォルトは1/4 (ページフォルトをトリガに してデータ転送が起こる)

NVIDIA HPC SDK コンパイラ

- ・既存のコードをNVIDIA GPUに向けて移植する上では、ほぼ一択
 - 2ヶ月ごとにリリース、最新は 24.11
- GH200向けにはこのような感じでコンパイラを呼べば良い
- OpenACC
 - data指示文を省略可能 nvfortran -Ofast -acc=gpu -gpu=cc90,mem:unified:nomanagedalloc file.f90
- Stdpar (Fortran: Do-concurrent)
 - CPUとGPU協調動作での加速も将来的に期待、ただしコンパイラ任せnvfortran -Ofast -stdpar=gpu -gpu=cc90,mem:unified:nomanagedalloc file.f90

MIG (Multi-Instance GPU)

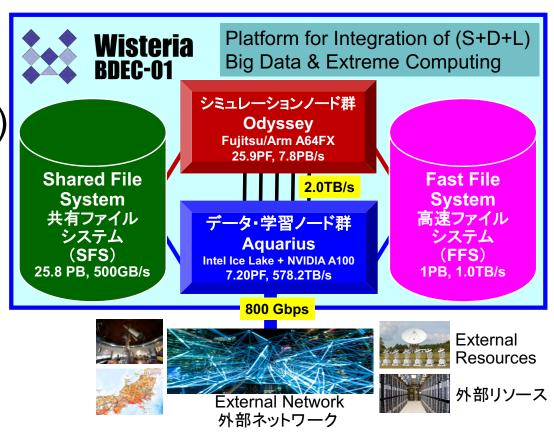
- GPUリソース(SM(演算コア),メモリ)を複数のインスタンスに分割する機能
 - https://www.nvidia.com/ja-jp/technologies/multi-instance-gpu/
- ・想定される活用シーン
 - ・1基のNVIDIA GH200の演算リソースを使い切れない場合
 - → 分割されたGPUを使えば、トークン消費量を抑えられる
 - ・実装・開発中のコードのデバッグ・動作テスト・機能テスト
 - → (見かけの)GPU数が増えるので,ジョブ投入後の待ち時間が短縮される
 - ・教育利用(主にGPUプログラミングの初心者・初級者向け)
 - → (見かけの)GPU数が増えるので,多数の受講者のジョブが同時に実行される
- Miyabi-GでのMIG利用形態(GH200を4分割)
 - ・トークン消費量は通常のノード占有キューの 1/4
 - MIG#3 だけはGPUリソース(SM数)が少ないが気にしない

	MIG#0	MIG#1	MIG#2	MIG#3
GPUリソース	32 SMs, 24 GB	32 SMs, 24 GB	32 SMs, 24 GB	26 SMs, 24 GB
CPUリソース	18コア, 25 GiB	18コア, 25 GiB	18コア, 25 GiB	18コア, 25 GiB
2024/12/5		PCCC24「サステイナブルなHF	Cに向けて」	

東大情報基盤センターの目指す 『計算・データ・学習』とデータ利活用を融合した 革新的なスーパーコンピューティング

(シミュレーション(計算)+データ+学習)融合(S+D+L)

- 東大情報基盤センターでは、2015年頃から「(S+D+L)融合」の重要性に注目し、それを実現するためのハードウェア、ソフトウェア、アプリケーション、アルゴリズムに関する研究開発を開始
 - BDEC計画(Big Data & Extreme Computing)
 - 「データ+学習」による、より高度な「シミュレーション」
 - Al for HPC, Al for Science
 - 地球科学関連では自然な発想(すでに実施されている)
- 2021年5月に運用を開始した「Wisteria/BDEC-01」は「BDEC計画」の1号機
 - Reedbush, Oakbridge-CXは「BDEC」のプロトタイプと 位置づけられる
 - 「計算・データ・学習(S+D+L)」融合を実現する, 世界でも初めてのプラットフォーム PCCC24「サスティナブルなHPCに向けて」



Wisteria/BDEC-01

- 2021年5月14日運用開始
 - 東京大学柏Ⅱキャンパス
- 33.1 PF, 8.38 PB/sec., 富士通製
 - ~4.5 MVA(空調込み), ~360m²
- Hierarchical, Hybrid, Heterogeneous (h3)
- ・ 2種類のノード群
 - シミュレーションノード群(S, SIM):Odyssey
 - 従来のスパコン
 - Fujitsu PRIMEHPC FX1000 (A64FX), 25.9 PF
 - 7,680ノード(368,640 コア), 20ラック, Tofu-D
 - データ・学習ノード群(D/L, DL): Aquarius
 - ・ データ解析, 機械学習
 - Intel Xeon Ice Lake + NVIDIA A100, 7.2 PF
 - 45ノード(Ice Lake:90基, A100:360基), IB-HDR
 - 外部リソース(ストレージ, サーバー, センサーネット ワーク他)に直接接続
 - ファイルシステム: 共有(大容量) 高速 (ナブルなHPCに向けて)

BDEC:「計算・データ・学習(S+D+L)」 融合のためのプラットフォーム (Big Data & Extreme Computing)

Wisteria

BDEC-01

2024/12/5

Simulation Nodes
Odyssey
25.9 PF, 7.8 PB/s

Fast File System (FFS) 1.0 PB, 1.0 TB/s Shared File System (SFS) 25.8 PB, 0.50 TB/s

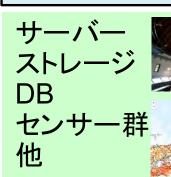
Data/Learning Nodes
Aquarius
7.20 PF, 578.2 TB/s

Wisteria BDEC-01

計算科学コード

最適化されたモデル, パラメータ シミュレーション ノード群, Odyssey

Wisteria/BDEC-01

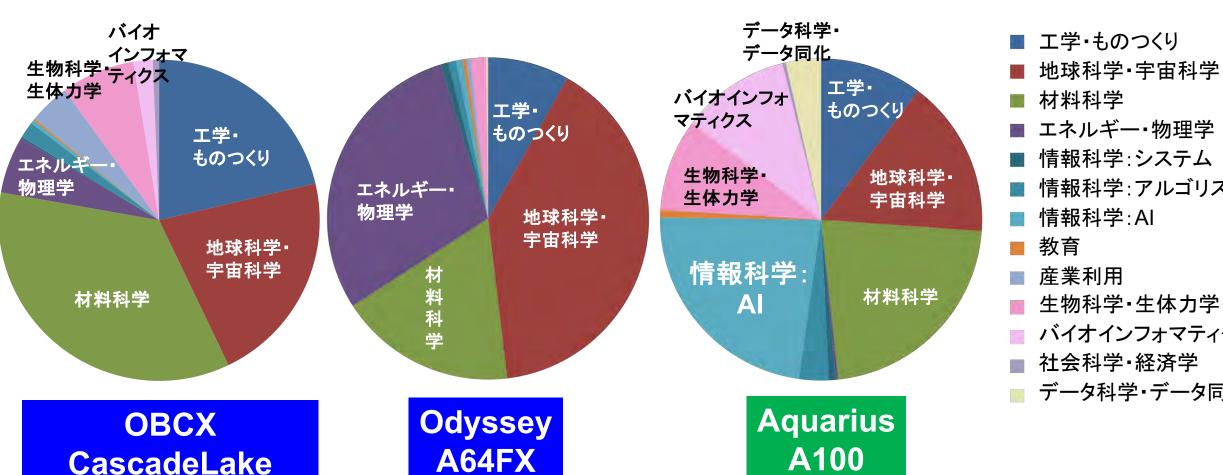

計算結果

機械学習, DDA

データ・学習ノード群 Aquarius

データ同化データ解析

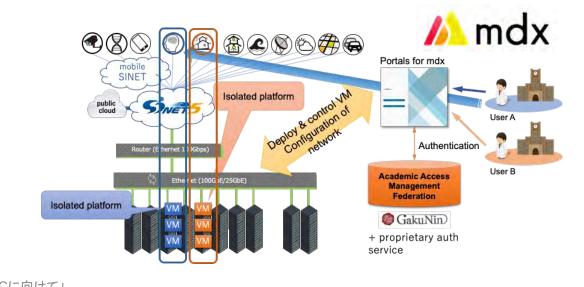
観測データ



外部 リソース

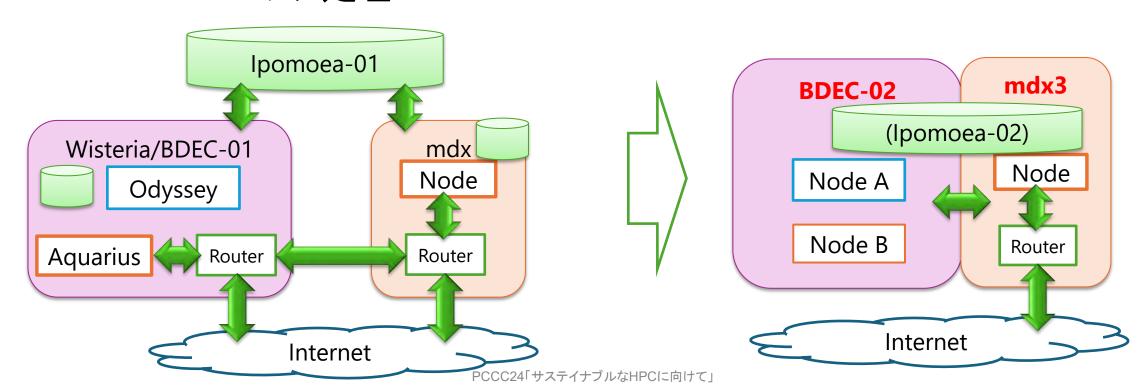
外部ネットワーク

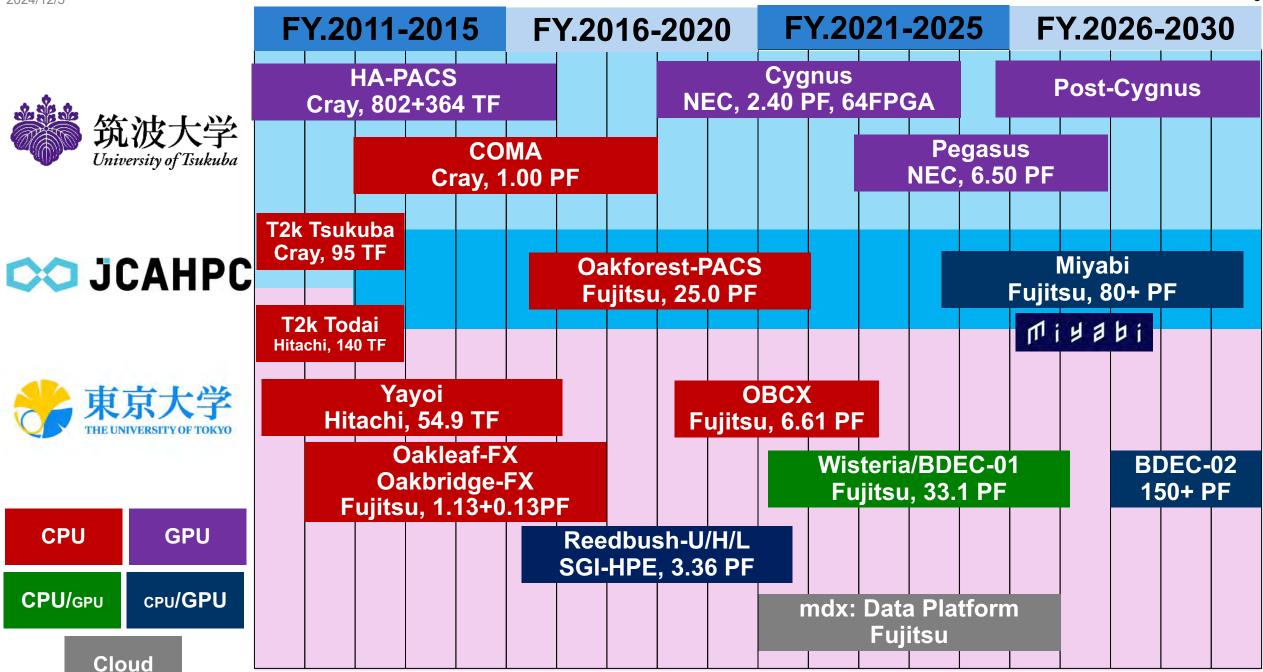
2023年度分野別計算資源利用割合 **№** 汎用CPU, ■GPU



- エネルギー・物理学
- 情報科学:システム
- 情報科学:アルゴリズム
- 情報科学:Al
- 生物科学・生体力学
- バイオインフォマティクス
- 社会科学・経済学
- データ科学・データ同化

2023年9月末退役


BDEC-02: BDEC計画 第2世代構想


- 運用開始: 2027年秋~2028年3月を想定
 - Wisteria/BDEC-01は2027年4月末で運用終了
- 当初は200-250 PFLOPSを期待していたが、150 PFLOPS辺りが現実的か
 - とはいえHPL性能ありき、ではない
- AI for Scienceに向けたリアルタイム「計算・データ・学習」融合
- Miyabiに向けたGPU移行で培った知見 → NVIDIA GPU、またはOpenACC / StdParと互換性のあるプログラミング環境
 - ユーザは2年余りのNVIDIA GPUへの移行の労力を払ってきた
 - Fortranは未だに重要
- 専用のデバイス/システムとの接続も想定
 - 量子コンピュータ等
 - h3-Open-BDEC, h3-Open-BDEC/QH
- mdx1のリプレースも必要な時期
 - クラウド指向のデータ利活用基盤
 - mdxの機能も包含できるよう設計
 - ストレージはシステム全体で共有

BDEC-02+mdx3 (仮)のコンセプト

- 資源をできるだけ共有し、冗長構成を避けることでコストを削減
 - 今でもWisteria/BDEC-01とmdxは同一の部屋に設置されている、、
- 適材適所の使い分けを1システムに統合
 - mdx3: インタラクティブ、リアルタイム処理、コンテナベース
 - BDEC-02: バッチ処理

まとめ

- Miyabi (OFP-II)の運用開始間近 2025年1月~
 - 導入、運用:富士通
 - 設置場所:東京大学 柏キャンパス (OFPと同じ部屋、ずっと小さい)
 - Miyabiの合計性能 80.1 PFLOPS: OFP (25 PFLOPS)の約3.2倍の性能 HPL性能 46.8 PFLOPS, OFP (13.55 PFLOPS)の3.46倍
 - Miyabi-G: 演算加速ノード, NVIDIA GH200 Superchip CPU-GPU間はNVLink-C2Cによりキャッシュコヒーレント, 1.9TB NVMe SSD

 - 合計: 1,120 node, 78.8 PFLOPS, 5.07 PB/s
 - Miyabi-C: 汎用CPUノード, Intel Xeon Max 9480

 - − HBM2eのみ使用 (DIMMは無し)− 合計: 190 ノード, 1.3 PFLOPS, 608 TB/s
 - ストレージ: DDN Lustre 11.3 PB, All Flash
 - GH200を採用する国内初のオープンシステム、世界的に見ても特徴あるシス テム
- BDEC計画 第2世代: BDEC-02
 - mdxの機能を包含できるように → mdx3 ...?
 - インタラクティブ、リアルタイム処理 + バッチ処理を1システムに統合

2024/12/5

利用説明会+見学

· 日時: 2025年1月16日(木)14:00~17:00

・ 場所: 東京大学 柏キャンパス 第2総合研究棟3階 315会議室 or オンラ

イン

• 詳細: https://www.cc.u-tokyo.ac.jp/events/seminar/20250116.php

申し込みはこちらから

