
Dibakar Gope, David Mansell, Ian Bratt

Large Language Models on
CPUs

2

Outline
Introduction to LLMs
Optimized GEMV and GEMM kernels for 4b LLMs
Single inference on AWS Graviton3
Batched inference on Graviton3
Conclusion and future work

3

Background
LLMs have transformed the way we think about language understanding and generation

Facilitating their efficient execution on Arm CPUs will expand their reach to billions of
Arm devices

LLMs are often BW bound and have a large weight memory footprint – CPU can achieve
competitive performance

CPU provides portability and flexibility – SW compression schemes, etc.

Question: What is the potential performance of LLMs on Arm CPUs for single and batch
inference cases?

4

Key results – LLMs on CPUs
Focusing on LLaMA2 7B 4b quantized (Q4) model as a benchmark

Llama.cpp (GGML) c/c++ runtime demonstrates performance on existing Arm platforms
but fails to demonstrate the true potential of Arm CPUs

Developed highly optimized blocked Q4 kernels for non-batched and batched inferences

End-to-end LLaMA2 7B 4bit Speedup on Graviton3 (Neoverse V1):
Single inference case: 35 tokens/s for 8 threads, 3.15x over GGML
Batched inference case: 200+ tokens/s for batch size = 8,

2.03x for BS=8 over optimized GEMV, 4.37x over GGML (BS=1)
*BS = batch size

Evolution of Large Language
Models

6

What are large language models (LLMs)?
A language model can predict the next word given a context or a question.

Large language models are trained with massive amounts of data to learn language
patterns

Perform tasks ranging from summarizing and translating texts to responding in chatbot
conversations

Basically, anything that requires language analysis of some sort.

7

LLaMA

BLOOM

Common Sense Reasoning Task

Evolution of large language models

Why Scale Language Models?

ü Bigger is Better!

ü Performance continues to
improve

Billions parameters
Large dataset (> Trillions of tokens)

How does LLM work?

9

Meta’s 7B-70B parameter LLaMA 2 LLM

Norm

Feed-Forward
Network

Norm

Multi-Head
Self Attention

Pre-proc

Layer 1

. . .

token j + 1

Layer 2

Layer 79

Layer 80

Post-proc

token j LLaMA 2 is a well-known open-source LLM released by
Meta
• Llama.cpp is a popular open-source framework for

quantizing and running it.

A stack of self-attention transformer layers

80 layers in cascade for LLaMA 2 70B model,

32 layers for LLaMA 2 7B model

10

Meta’s 7B-70B parameter LLaMA 2 LLM

Norm

Feed-Forward
Network

Norm

Multi-Head
Self Attention

Pre-proc

Layer 1

. . .

token j

Layer 2

Layer 79

Layer 80

Post-proc

Pre-proc

Layer 1

. . .

token j + 1

Layer 2

Layer 79

Layer 80

Post-proc

Pre-proc

Layer 1

. . .

token j + 2

Layer 2

Layer 79

Layer 80

Post-proc

Each round through the network generates
a new token.

The new token is fed into the network's
next round.

The "state" gradually builds up and is
carried from left to right in the figure
(through LLM's Key Value cache).

A typical LLM inference involves going
through the network multiple times and
generating many tokens.

11

Norm

Feed-Forward
Network

Norm

Multi-Head
Self Attention

Pre-proc

Layer 1

. . .

token j

Layer 2

Layer 79

Layer 80

Post-proc

Pre-proc

Layer 1

. . .

token j + 1

Layer 2

Layer 79

Layer 80

Post-proc

Pre-proc

Layer 1

. . .

token j + 2

Layer 2

Layer 79

Layer 80

Post-proc

What are three popular
chess openings?

There

There

are

are

1st round: -
2nd round: What are three popular chess openings?
3rd round: What are three popular chess openings? There
…
Nth round: What are three popular chess openings? There are …

LLM’s key value
cache:

Example

GEMM

GEMM

Norm

Feed-Forward
Network

Norm

Multi-Head
Self Attention GEMV

GEMV

Norm

Feed-Forward
Network

Norm

Multi-Head
Self Attention GEMV

GEMV

12

Non-batched inference of LLMs – generative phase
Runtime dominated by the projection and feed
forward layers

Projection and feed forward layers are GEMVs
for non-batched single inference, MHA is GEMM

All layers are GEMMs for batched inference

Memory-bound problem with memory accesses
dominated by the weights

LLaMA inference –
CPU runtime on
Graviton3 - Neoverse V1

14

GEMM/GEMV background
For typical operators in LLMs, weight matrix (B) is
much larger than the input (A) and output (C).

Compression of weight matrix is key to reducing
memory and bandwidth consumption.

llama.cpp/GGML use block quantized formats to
store chunks of weight columns and activations

In GGML, a dot-product kernel computes a single
result – it’s called at each point to populate the
whole of C.

Output length (~4k)

Ba
tc

he
s

Input
length
(~4k)

Output activations
(C)

Weight
matrix (B)

Input activations
(A)

Quantized block
(eg 32 values)

Single activation row in
non-batched case

15

Block Quantized Formats

Original
32xFP16 values

64 bytes

q4_0
32xS4, 1xFP16

18 bytes

Low 16 and high 16 weights
interleaved to facilitate processing

FP16 scale – approximately -1/8
of largest original value

Weight format: chosen to
optimize space and bandwidth

q8_0
32xS8, 1xFP16

34 bytes FP16 scale – approximately -1/128
of largest original value

Activation format: chosen
to facilitate computation
(int8 allows use of SDOT)

16

Block processing steps – (original GGML/llama.cpp)
Expand low weights to 8b (AND, SUB)
Expand high weights to 8b (SHR, SUB)
Initialize integer accumulator (MOV)
Multiply low part (DOT)
Multiply high part (DOT)
Convert LHS scale to FP32 (FCVT)
Convert RHS scale to FP32 (FCVT)
Combine scales (FMUL)
Convert integer sum to FP32 (SCVTF)
Scale + Accumulate (FMLA)

“real work”

scalar/pseudo-scalar ops

12 operations, of which 2 are doing the “real” MAC work (17%)
• Plus 5 load ops (not shown) – comfortably compute bound at instruction level.

50% (6/12) are scalar/pseudo-scalar (work on a vector that is later reduced)

(-) No reuse of activations –
redundant loads
(-) No reuse of activations scale
(-) No use of vector instructions for
weights scales
(-) Pseudo-scalar ops

17

Avoiding pseudo-scalar operations
Half the operations in original code are scalar or “pseudo-scalar” – operating on a
vector of values which is really one true value split across lanes.
• This technique reduces the number of reduction operations (sum across lanes) needed.
• Still less efficient than ”true” vector operations.

Using true vector operations should improve performance by around 60%.
• Runtime of 50% (already vectorized) + (50%/4 = 12.5%) = 62.5%.
• 62.5% runtime = 1.6x performance.

=> Vector lanes need to accumulate different results rather than multiple parts of the
same result.
=> Compute more than one result at once – for non-batched case this must be different
output points.

18

Transformed block layout

To avoid pseudo-scalar ops, need to arrange than each lane is working on unique result.
This means moving data into the relevant lane (transposing).
Lane loads can assemble vector of scale values.

Original in-memory format Processing format

Scale values

Weights
transposed into
columns

19

Block processing steps – 4 simultaneous blocks

Expand low weights to 8b (4x AND, SUB)
Expand high weights to 8b (4x SHR, SUB)
Initialize integer accumulator (MOV)
Multiply low parts (4x DOT)
Multiply high parts (4x DOT)

Convert integer sum to FP32 (SCVTF)
Scale + Accumulate (FMLA)

38 operations, computing 4 blocks => 9.5 operations per block (21% MAC)
26% speedup

Transpose weights into columns (8x ZIP)

Convert LHS scale to FP32 (FCVT)
Convert RHS scales to FP32 (FCVT)
Combine scales (FMUL)

Still scalar, but amortised

Now doing useful
vector work

Extra operations added!
(+) Reuse of activations –
No redundant loads
(+) Reuse of activations scale
(+) Use of vector instructions for
weights scales
(+) No pseudo-scalar ops

20

Optimizing in-memory format
Instead of permuting weights each time, store in memory in blocked format instead.
• Space neutral – same data in a different order.
• Improved alignment characteristics (no more 18-byte structures).
• Scale factor handling easier (don’t need to assemble vector from multiple locations)
• Could go full “structure of arrays”; we just went for ”array of more useful structures”.

Extra saving available on 4->8 bit unpacking:
• Current scheme stores signed 4-bit values as unsigned (+8 bias) to avoid sign extension problems.
• Need to subtract 8 to restore true signed value and sign bits.
• Turns out it’s more efficient to store signed values directly:

Top nibble can achieve sign extension with single signed shift op.
Bottom nibble can be recovered with 2 shifts, which should cost the same as AND and SUB.

21

Block processing steps – optimized memory format

Expand low weights to 8b (4x MUL, SHR)
Expand high weights to 8b (4x SHR, SUB)
Initialize integer accumulator (MOV)
Multiply low parts (4x DOT)
Multiply high parts (4x DOT)

Convert integer sum to FP32 (SCVTF)
Scale + Accumulate (FMLA)

26 operations, computing 4 blocks => 6.5 operations per block (31% MAC)
85% speedup over original code

Transpose weights into columns (8x ZIP)

Convert LHS scale to FP32 (FCVT)
Convert RHS scales to FP32 (FCVT)
Combine scales (FMUL)

Non-batched inference on
Graviton3 server CPUs
(Neoverse cores)

23

Disclaimer
• This benchmark presentation made by Arm Ltd and its subsidiaries (Arm) contains forward-looking statements and
information. The information contained herein is therefore provided by Arm on an "as-is" basis without warranty or
liability of any kind. While Arm has made every attempt to ensure that the information contained in the benchmark
presentation is accurate and reliable at the time of its publication, it cannot accept responsibility for any errors,
omissions or inaccuracies or for the results obtained from the use of such information and should be used for guidance
purposes only and is not intended to replace discussions with a duly appointed representative of Arm. Any results or
comparisons shown are for general information purposes only and any particular data or analysis should not be
interpreted as demonstrating a cause and effect relationship. Comparable performance on any performance indicator
does not guarantee comparable performance on any other performance indicator.
• Any forward-looking statements involve known and unknown risks, uncertainties and other factors which may cause
Arm’s stated results and performance to be materially different from any future results or performance expressed or
implied by the forward-looking statements.
• Arm does not undertake any obligation to revise or update any forward-looking statements to reflect any event or
circumstance that may arise after the date of this benchmark presentation and Arm reserves the right to revise our
product offerings at any time for any reason without notice.
• Any third-party statements included in the presentation are not made by Arm, but instead by such third parties
themselves and Arm does not have any responsibility in connection therewith.

24

LLaMA2 7B Q4_0 for single inference case on Graviton3 (Neoverse V1)

Single thread behavior Thread scaling behavior

2.1x speedup

Batched inference

26

Batched inference of LLMs
Typically seen in server setting

Larger batch of inferences possible when serving multiple requests from different users
• Difference in term of sequence lengths can be handled with techniques like dynamic batching

Limited batching of inference for a single user enabled by speculative decoding

A throughput optimisation problem within constraints of latencies and limited resources
• Memory footprint is a challenging constraint for large models (LLAMA2 up to 65 billion parameters,

PALM up to 540 billions)

27

Batching of operators
Linear projections and the Feed Forward Network can be easily batched
• GEMV operations will become GEMM operations
• Size of matrices and arithmetic intensity will increase with batch size

But attention mechanism cannot be batched
• Even if multi-query attention & grouped-query attention can be processed with GEMM operations

linear
GEMV

(dmodel x dmodel)

User 1

Weights

linear
GEMM

(batch x dmodel x dmodel)

User 1

Weights

User 2

User n

attentionUser 1

KV cache

attention

KV cache

User 2

28

Optimized GEMM for batched inference
Uses the same concepts as GEMV:
• Weights in blocks prearranged ready for processing.
• Apply the same to activations (as we now process multiple rows of activations).

Uses SMMLA instruction (double the MAC count of SDOT, requires
multiple output rows).

Reduced bandwidth consumption as each input is processed by
several SMMLA instructions.

Batch 8: 79 vector ops, 32 output points => 2.5 ops/point (40% MAC)
• 4.8x speedup vs original GGML code, 2.6x speedup vs optimized GEMV code

SMMLA

Batched inference on Graviton3
server CPUs
(Neoverse cores)

30

LLaMA2 7B Q4_0 for batched inference case on Graviton3 (Neoverse V1)

Per-batch performance Overall throughput

31

LLaMA2 70B Q4_0 for batched inference case on Graviton3 (Neoverse V1)

Per-batch performance Overall throughput

32

LLaMA2 7B Q8_0 for batched inference case on Graviton3 (Neoverse V1)

Per-batch performance Overall throughput

33

Limitations and future work
Q4_0 is the simplest blocked quantization format.
• Results are lower quality than other, more complex, schemes; performance is much higher.
• Need to understand more about this tradeoff – is q4_0 good enough for some use cases?

Future work to understand and optimize more of the llama.cpp schemes (e.g. Q4_K).

34

Conclusions
CPUs are a viable platform for LLM inference.

Llama.cpp has reasonable implementations for Arm CPUs but further optimization is
possible.
• 2.1x speedup per thread on non-batched case.

High scaling of overall throughput with batch size shows promise for future platforms
with more lpddr bandwidth

Confidential © 2023 Arm

Thank You
Danke

Gracias
Grazie
谢谢

ありがとう
Asante
Merci

감사합니다
ध"यवाद

Kiitos
ارًكش

ধন#বাদ
הדות

Confidential © 2023 Arm

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in

the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

