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How Fast Do Algorithms
Improve?
By YASH SHERRY
MIT Computer Science & Artificial Intelligence Laboratory, Cambridge, MA 02139 USA
NEIL C. THOMPSON
MIT Computer Science & Artificial Intelligence Laboratory, Cambridge, MA 02139 USA
MIT Initiative on the Digital Economy, Cambridge, MA 02142 USA

A lgorithms determine which calculations computers use to solve
problems and are one of the central pillars of computer science.
As algorithms improve, they enable scientists to tackle larger
problems and explore new domains and new scientific tech-

niques [1], [2]. Bold claims have been made about the pace of algorithmic
progress. For example, the President’s Council of Advisors on Science and
Technology (PCAST), a body of senior scientists that advise the U.S. President,
wrote in 2010 that “in many areas, performance gains due to improvements in
algorithms have vastly exceeded even the dramatic performance gains due to
increased processor speed” [3]. However, this conclusion was supported based
on data from progress in linear solvers [4], which is just a single example. With
no guarantee that linear solvers are representative of algorithms in general,
it is unclear how broadly conclusions, such as PCAST’s, should be interpreted.
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Is progress faster in most algo-
rithms? Just some? How much
on average?

A variety of research has
quantified progress for partic-
ular algorithms, including for
maximum flow [5], Boolean
satisfiability and factoring [6],
and (many times) for linear
solvers [4], [6], [7]. Others in
academia [6], [8]–[10] and the
private sector [11], [12] have
looked at progress on bench-
marks, such as computer chess
ratings or weather prediction,
that is not strictly comparable to
algorithms since they lack either
mathematically defined problem
statements or verifiably optimal
answers. Thus, despite substan-
tial interest in the question,
existing research provides only
a limited, fragmentary view of
algorithm progress.

In this article, we provide the
first comprehensive analysis of
algorithm progress ever assem-
bled. This allows us to look sys-
tematically at when algorithms
were discovered, how they have
improved, and how the scale
of these improvements com-
pares to other sources of inno-
vation. Analyzing data from 57
textbooks and more than 1137
research papers reveals enor-
mous variation. Around half of
all algorithm families experience
little or no improvement. At the
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Point of View

Fig. 1. Algorithm discovery and improvement. (a) Number of new algorithm families discovered each decade. (b) Share of known algorithm

families improved each decade. (c) Asymptotic time complexity class of algorithm families at first discovery. (d) Average yearly probability

that an algorithm in one time complexity class transitions to another (average family complexity improvement). In (c) and (d) “>n3” includes

time complexities that are superpolynomial but subexponential.

from factorial or exponential time
(n! | cn) to polynomial times. These
improvements can have profound
effects, making algorithms that
were previously infeasible for any
significant-sized problem possible for
large datasets.

One algorithm family that has
undergone transformative improve-
ment is generating optimal binary
search trees. Naively, this problem
takes exponential time, but, in 1971,
Knuth [16] introduced a dynamic
programming solution using the

properties of weighted edges to
bring the time complexity to cubic.
Hu and Tucker [17], in the same year,
improved on this performance with a
quasi-linear [O(n log n)] time solution
using minimum weighted path length,
which remains the best asymptotic
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• analyzing data from 57 

textbooks and 1137 research 

papers 

• almost half of all algorithm 

families little or no 
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• 14% of algorithmic families 

transformative improvements 

• 30%-43% of algorithmic 

families improvements 

comparable or greater than 

Moore’s Law 

• “Algorithms are one of the 

most important sources of 

improvement in computing..."
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Will we run out of data? An analysis of the limits
of scaling datasets in Machine Learning

Pablo Villalobos⇤, Jaime Sevilla⇤†, Lennart Heim⇤§, Tamay Besiroglu⇤‡, Marius Hobbhahn ⇤¶, Anson Ho⇤

Abstract—We analyze the growth of dataset sizes used in

machine learning for natural language processing and computer

vision, and extrapolate these using two methods; using the histor-

ical growth rate and estimating the compute-optimal dataset size

for future predicted compute budgets. We investigate the growth

in data usage by estimating the total stock of unlabeled data

available on the internet over the coming decades. Our analysis

indicates that the stock of high-quality language data will be

exhausted soon; likely before 2026. By contrast, the stock of low-

quality language data and image data will be exhausted only

much later; between 2030 and 2050 (for low-quality language)

and between 2030 and 2060 (for images). Our work suggests

that the current trend of ever-growing ML models that rely

on enormous datasets might slow down if data efficiency is not

drastically improved or new sources of data become available.

KEY TAKEAWAYS
• We project the growth of training datasets for vision and

language models using both the historical growth rate and
the compute-optimal dataset size given current scaling
laws and existing compute availability estimates (Section
III-A).

• We also project the growth in the total stock of unlabeled
data, including high-quality language data (Section III-B).

• Language datasets have grown exponentially by more
than 50% per year, and contain up to 2e12 words as of
October 2022. (section IV-A)

• The stock of language data currently grows by 7% yearly,
but our model predicts a slowdown to 1% by 2100. This
stock is currently between 7e13 and 7e16 words, which
is 1.5 to 4.5 orders of magnitude larger than the largest
datasets used today (Section IV-B1).

• Based on these trends, we will likely run out of language
data between 2030 and 2050 (Section IV-D).

• However, language models are usually trained on high-
quality data. The stock of high-quality language data is
between 4.6e12 and 1.7e13 words, which is less than
one order of magnitude larger than the largest datasets
(Section IV-B2).

• We are within one order of magnitude of exhausting high-
quality data, and this will likely happen between 2023 and
2027 (Section IV-D).

• Projecting the future growth of image datasets is less
obvious than for language, because the historical trend
stopped in the past four years1. However, the growth rate

⇤Epoch, †University of Aberdeen, ‡MIT Computer Science & Artificial
Intelligence Laboratory, §Centre for the Governance of AI, ¶University of
Tübingen

1New models appeared which use much more data than what was the case
in the previous years, see [1].

seems likely to be around 18% to 31% per year. The
current largest dataset is 3e9 images (Section IV-A).

• The stock of vision data currently grows by 8% yearly,
but will eventually slow down to 1% by 2100. It is
currently between 8.11e12 and 2.3e13 images – three to
four orders of magnitude larger than the largest datasets
used today (Section IV-C).

• Projecting these trends highlights that we will likely run
out of vision data between 2030 to 2070 (Section IV-D).

I. INTRODUCTION

Training data is one of the three main factors that determine
the performance of Machine Learning (ML) models, together
with algorithms and compute. Current understanding of scaling
laws suggests that future ML capabilities will strongly depend
on the availability of large amounts of data to train large
models [2, 3].

Previous work compiled a database of more than 200 train-
ing datasets used in ML models [1] and estimated historical
rates of growth in dataset size for vision and language models.

To learn about the limits of this trend, we developed
probabilistic models to estimate the total amount of image and
language data that will be available between 2022 and 2100.
Based on our dataset size trend projections, we then estimated
the limit of these trends due to the exhaustion of available
data.

II. PREVIOUS WORK

Stock of data: There have been several estimates of the size
of the internet and the total amount of information available
[4, 5, 6]. However, in recent years, these types of reports
have not provided breakdowns of different data modalities (for
example into the number of images, videos, or blog posts), and
instead aggregated all data modalities into a single number in
bytes [7].

Data bottleneck in ML: In [8], the author estimated the
stock of high-quality data and used the scaling laws [3] to
predict that the stock of data is not enough to scale language
models more than 1.6x the size of DeepMind’s Chinchilla lan-
guage model [3] using compute-optimal scaling. We improve
this analysis by creating explicit models of dataset size growth
and more detailed estimations of the stock of data over time,
which allows us to predict the date that datasets will become
as large as the total stock of data.
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量子機械学習の可能性

• 量子・古典ハイブリッド画像認識 

• 従来、画像認識はデータが大きすぎるため、量子機械学習は不可能であると考えられていた 

• 古典検出器データの量子機械学習 

• 少数データ・少数パラメータ量子機械学習

4
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プロジェクトの概要
量⼦ソフトウェアとHPC・シミュレーション技術の融合により、サスティ
ナブルなAI技術を開拓する。具体的には、少数データ・少数パラメ
ータでも有効な量⼦機械学習⼿法と、固体・原⼦核・実時間ダイ
ナミクスを扱える多体問題量⼦シミュレーション⼿法を開発し、テン
ソルネットワークなどの量⼦埋め込み技術とさまざまな量⼦最適化
技術を駆使することで、量⼦機械学習・量⼦シミュレーション・量
⼦計測デバイスを結合した量⼦AI技術を創出する。さらに、量⼦
オフローディングや量⼦AIエッジコンピューティングのための量⼦HPC
基盤を構築・展開する。それによりクラウドからエッジまで誰もがシー
ムレスに量⼦AI技術を利⽤できる融合環境を実現し、健康・福
祉、エネルギー問題といった重要な社会課題の解決に貢献する。
量⼦HPC基盤の活⽤が進むことで、新しいアイデアに基づく新規ビ
ジネス・企業の参⼊が促され、新たに直⾯する課題が次の世代の
量⼦AI技術の研究開発を加速する。このような量⼦AI技術に⽀
えられた「創発を⽣み出すサスティナブルな好循環」を実装すること
で、我が国の⽣産性⾰命の促進や新産業創出・国際競争⼒が
持続する社会の実現を⽬指す。

拠点名称︓量⼦ソフトウェアとHPC・シミュレーション技術の共創によるサスティナブルAI研究拠点

代表機関 東京⼤学 プロジェクトリーダー 藤堂眞治
東京⼤学⼤学院理学系研究科 教授

参画機関

（⼤学等）慶應義塾⼤学、理化学研究所、沖縄科学技術⼤学院⼤学、シカゴ⼤学
（企業等）川崎市、Amoeba Energy株式会社、SCSK株式会社、株式会社Quemix、京セラ株式会社、JSR株式会社、株式会社TIER
IV、凸版印刷株式会社、トヨタ⾃動⾞株式会社、⽇鉄ソリューションズ株式会社、International Business Machines Corporation、株式
会社三井住友フィナンシャルグループ、株式会社⽇本総合研究所、株式会社バイトルヒクマ、BIPROGY株式会社、blueqat株式会社、みずほリ
サーチ&テクノロジーズ株式会社、三菱ケミカル株式会社、株式会社三菱UFJフィナンシャル・グループ、村⽥機械株式会社

共創の場形成⽀援プログラム（COI-NEXT）【政策重点分野（量⼦技術分野）】

https://www.jst.go.jp/pf/platform/ºle/2022/2022_kyotengaiyou_2221.pdf実施期間: 2022年10月〜2032年3月

https://www.jst.go.jp/pf/platform/file/2022/2022_kyotengaiyou_2221.pdf


古典AIの課題を克服し「サスティナブルAI」の創出へ

• AIの「スケーラビリティ」 

• 従来の機械学習：精度を上げるにはより大量の学習データと複雑な学習モデルが必要 

• ムーアの法則の終焉：HPC技術における微細化・高速化の限界 

• 量子AIの可能性・将来性 

• 近年の量子デバイス技術の進展 

• 少数データ、少数パラメータによる高度な量子機械学習 

• 古典計算が難しい量子多体問題の量子シミュレーション 

• 量子シミュレーション・量子計測と量子機械学習の直接結合 

• 古典HPC基盤との融合 

• 拠点ビジョン ⇒ ３つのターゲット ⇒ ５つの研究開発課題

6COI-NEXT「量子ソフトウェアとHPC・シミュレーション技術の共創によるサスティナブルAI研究拠点」

サスティナブル量子
機械学習手法の創出

量子AIにむけた多体
問題量子シミュレー
ション手法の革新

量子HPC基盤の構
築と展開

ターゲット

・ エネルギーの不安なしに情報技術を存分に活用
   できる社会
・ 携帯端末にいたるまで量子技術が普及し数千万
   人の人々がその恩恵を受けられる社会
・ 量子AIに支えられた生産性革命や新産業創出が
   持続する社会

量子ソフトウェアとHPC・シミュレーション技術の
共創によるサスティナブルAIが拓く未来

ビジョン 研究開発課題

1. 量子機械学習による高汎化技術と最適化の統合 (量子機械学習)

2. 物質・材料科学のための多体問題量子シミュレーション
    手法開発 （量子シミュレーション)

3. 量子埋め込みに基づく量子古典融合アルゴリズム開発
    (量子埋め込み)

4. 量子機械学習/量子シミュレーションの高度化のための
    最適化技術開発 (量子最適化)

5. CPU〜GPU〜QPUの統合による量子HPC基盤構築
    (量子HPC)
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量子埋め込みに基づく量子古典融合アル
ゴリズム開発
・テンソルネットワーク・サンプリングによる新しい量子/古典
  アルゴリズム
・テンソルネットワークの枠組みによる量子埋め込み

・新しいデータやアルゴリズム表現形式によるシームレスな統合
・量子コンピュータと次世代HPCIの統合環境構築とユーザへの展開

CPU～GPU～QPUの統合による量子HPC基盤構築

素粒子・原子核物理

ライフサイエンス プラント最適化

プロセス最適化 マテリアル開発

創薬

・少数データ・少数パラメータに対する量子機械
  学習手法の開発
・データの符号化と学習・推論結果の統合技術の開発

量子機械学習による高汎化技術と
最適化の統合

物質・材料科学のための多体問題
量子シミュレーション手法開発
・周期系、格子系に対する多体問題量子シミュレーション手法
・量子機械学習とのダイレクト結合によるマテリアルズ・
  インフォマティクス

金融 自動運転

持続可能な量子AI技術と量子HPC基盤の社会への展開

量子機械学習/量子シミュレーション
の高度化のための最適化技術開発
・ゲート式量子コンピュータ/量子アニーリングマシン/
イジングマシンと機械学習の融合アルゴリズム
・量子回路のゲート最適化・量子コンパイラ



多体波動関数とテンソル

•  量子ビット(spin-1/2スピン)系の多体波動関数 

• 状態の重ね合わせ → 個の係数( )を決める必要がある → データ量  

•  は 本脚(階数 、 階)のテンソルとみなすことができる 

• テンソル = 多次元配列 = ベクトルや行列の一般化 

• 0本脚のテンソル → スカラー 

• 1本脚のテンソル → ベクトル 

• 2本脚のテンソル → 行列 

• ... 

• 本脚のテンソル → データ量、計算量とも に関して指数関数的に増加

N

2N 2N Cσ1,σ2,⋯,σN
2N

C N N N

N N

8

|Ψ⟩ = ∑
σ1,σ2,⋯,σN

Cσ1,σ2,⋯,σN
|σ1σ2⋯σN⟩

σ1 σ2 σ3 σN

・ ・ ・

C



さまざまなテンソル

• テンソルによる表現 

• 確率分布関数 

• 多次元データ 

• グリッドデータ、画像 

•  と  はそれぞれ  と  の2進数表現 

• 例) 256x256の画像は、256x256の行列あるいは 2１６ (16本脚)のテンソルとみなせる 

• ニューラルネットワーク 

• 重み行列 → 多数の脚からなるテンソル

(x1, x2, ⋯, xN) (y1, y2, ⋯, yN) x y

9

P(s1, s2, ⋯, sN)

ARTICLES NATURE COMPUTATIONAL SCIENCE

correlations, it is still highly correlated in space because the fine grid 
dependence is repeated.

Truncating the Schmidt decomposition in equation (2) approxi-
mates ui in an orthonormal time-dependent basis that evolves with 
the fluid flow to optimally capture spatially correlated structures. 
This is in contrast to classical scientific computing techniques 
(implemented through, for example, finite-difference or spectral 
methods) where the bases are structure-agnostic; that is, they are 
chosen a priori and disregard any structure in the solution.

We first apply the decomposition in equation (2) to DNS solu-
tions of the INSE (equation (7)) for the TDJ shown in the top row of 
Fig. 2a. The TDJ comprises a central jet flow along the x direction, 
and Kelvin–Helmholtz instabilities in the boundary layer of the jet 
eventually cause it to collapse (see equations (9)–(15) for the initial 
flow conditions). We decompose each velocity component accord-
ing to equation (2), which is an exact representation if d(n) = Γ2D(n) 
with (for details, see Supplementary Section 2)

Γ
2D(n) = min(4n, 4N−n). (4)

Figure 1b shows the Schmidt numbers d99(n, t) such that equation 
(2) represents the DNS solutions for the velocity fields with 99% 

accuracy in the L2 norm (more details on the Schmidt coefficients 
are provided in Supplementary Section 1). We find that d99(n, t) are 
well below their maximal values Γ2D(n) for n > 1. More specifically, 
we define χ

99

= max d

99

(n, t) as the maximal value of d99 for all n 
and time steps. We obtain χ99 = 25, and the interscale correlations 
captured by equation (2) with 

d(n) = min

(
Γ

2D(n), 25
)
 are shown 

by the blue-shaded area M in Fig. 1b. d99(n, t) is entirely contained 
within this blue area. Note that the Schmidt numbers are shown on 
a logarithmic scale in Fig. 1b, and thus the area M is much smaller 
than the area D corresponding to DNS.

We obtain qualitatively similar results for the DNS solutions 
to the TGV in 3D, where vortex stretching causes a single, large, 
ordered fluctuation to collapse into a turbulent flurry of small-scale 
structures (see the top row in Fig. 3a for visualization and equation 
(16) in the Methods for the initial flow conditions). In three spatial 
dimensions, the representation in equation (2) is exact if d(n) equals 
(Supplementary Section 2)

Γ
3D(n) = min (8n, 8N−n). (5)

The Schmidt numbers d99(n, t) resulting in a 99% accurate represen-
tation of the DNS solutions are shown in Fig. 1c. We find χ99 = 207, 
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Fig. 2 | 2D temporally developing jet. Dynamical simulation of the INSE in 2D for a planar jet streaming along x with Re!=!1,000, as defined in the Set-up 
of numerical experiments section in the Methods. a, Snapshots of the vorticity and velocity fields taken at t/T0!=!0.25, 0.75, 1.25, 1.75 (left to right). 
Red corresponds to positive vorticity (counter-clockwise flow) and blue to negative vorticity (clockwise). The top row corresponds to DNS results on 
a quadratic 210!×!210 grid (cf. Fig. 1a). Rows 2–4 are MPS results with different maximal bond dimensions χ. The bottom three rows are for URDNS on 
quadratic grids, as indicated. b, Reynolds stress τ12 (equation (14)) between the streamwise and cross-stream directions as a function of time and y 
coordinate. Red (blue) corresponds to positive (negative) stress.
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g(x, y) = g(x1, x2, ⋯, xN, y1, y2, ⋯, yN)
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Figure 1: Sample tensor networks: (a) simplified network

for a rectangular 7x7 qubit 1 + 40 + 1 depth random

quantum circuit with 742 rank-3 tensors; (b) a random

5-regular network with 100 tensors, arising in, e.g., SAT

problems; and (c) random planar network with 184 ten-

sors, arising in, e.g., the statistical-mechanical evaluation

of knot invariants.

dom quantum circuits, a fact that has recently
inspired proposals for quantum algorithms run-
ning on these circuits that aim towards a prac-
tically demonstrable quantum computational ad-
vantage over classical computers [11, 29–39]. The
key idea is that, unlike quantum algorithms (e.g.,
Shor or Grover) that require deep quantum cir-
cuits and high gate fidelities — inaccessible in
the near future — to become manifestly advanta-
geous, the task of sampling bit strings from the
output of random quantum circuits is expected
to be hard to simulate classically even for low-
depth circuits and low-fidelity gates. The precise
threshold for observing such a quantum advan-
tage is nonuniversal and ultimately depends on
the e�ciency of the classical simulation for each
particular combination of circuit model and quan-
tum chip architecture. This motivates the de-
velopment of high-performance simulation tech-
niques for these quantum systems, predominantly
based on finding good contraction paths for ten-
sor networks, that runs in parallel to the race for
the development of higher qubit count and qual-
ity devices [40–42].

Inspired by the classical simulation of quantum
circuits, here we introduce a new framework for
exact contraction of large tensor networks with
arbitrary structure (see examples in Fig. 1). The
first key idea of this framework is to explicitly
construct the contraction tree for a given tensor
network, combining agglomerative, divisive, and

optimal drivers for forming sub-trees at di↵erent
scales. The second key idea is to hyper-optimize
the generation of these trees, and to do this with
respect to the entire tree and thus the total con-
traction cost, rather than just the leading scal-
ing, given by the line-graph tree-width for exam-
ple. We also establish a powerful set of simpli-
fications for e�ciently pre-processing tensor net-
works prior to contraction.

Using this framework we are able to find
very high-quality contraction paths, achieving
speedups that scale exponentially with the num-
ber of tensors in the network compared to es-
tablished approaches, for a variety of problems.
The drivers we test include recently introduced
contraction algorithms based on graph parti-
tioning and community structure detection [43],
previously theorized [11] and recently imple-
mented [44] algorithms based on the tree decom-
position of graphs, as well as new heuristics that
we introduce in this work. Furthermore, observ-
ing that di↵erent graph structures favor di↵erent
algorithms, we implement a hyper-optimization
approach, where both the method applied and its
parameters are varied throughout the contraction
path search, leading to automatically customized
contraction algorithms that often achieve near-
optimal performance.

We demonstrate the new methodology intro-
duced here on a range of benchmarks. First, we
test on problems defined on random graph fam-
ilies, such as simulation of solving MAX-CUT
with quantum approximate optimization as well
as weighted model counting. We find substan-
tial improvements in performance compared to
previous methods reported in the literature. We
then simulate random quantum circuits recently
implemented by Google on the Bristlecone and
Sycamore architectures. We estimate a speed-up
of over 10,000◊ in the classical simulation of the
Sycamore ‘supremacy’ circuits compared to what
is given in [45]. In general, our algorithms out-
perform all others for the same task, by a wide
margin on general networks and by a narrower
margin on planar structures. These findings thus
illustrate that our methods can lead to significant
performance gains across a spectrum of tensor
network applications. This is the main result of
this paper.

The remainder of this paper is organized as
follows. In Sec. 2 we formalize the problem of
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テンソル分解

• 大きな(=脚の多い)テンソルを小さな(=脚の少ない)テンソルの積に分解 

• テンソルをつなぐ線は脚の添字を揃えて和をとることを意味する（=縮約) 

• テンソル ⇒ テンソル分解 ⇒ テンソルネットワーク 

• 他にも、ボルツマンマシン、経路積分、DNNなどさまざまな分解/表現手法 

• テンソルネットワークの利点 

• データ量の圧縮によるコンパクトな表現  

• 縮約順序に関する自由度 

• 特異値分解に基づく高精度近似 

• テンソルネットワーク表現 

• もともとの大きなテンソルの高精度近似(例: 変分波動関数) 

• 厳密に分解できる場合もある(例: GHZ状態、AKLT状態) 

• 問題そのものがテンソルネットワークで表現されている場合 

• 古典統計力学•量子統計力学、量子回路

O(exp(N )) → O(N )
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量子コンピュータの古典シミュレーション

• 量子ソフトウェア・アルゴリズムの精度・性能評価 

• 古典/量子ハイブリッドアルゴリズム、量子機械学習、量子誤り訂正 

• 古典計算の限界を知る 

• 量子超越の本当の境界はどこか？ 

• 量子回路は典型的な量子多体系 

• 量子回路のシミュレーション技術 → 物理やその他の分野への展開 

• 超伝導・量子液体・素粒子・原子核 

• 複雑系・時系列データ・機械学習 

• 量子コンピューティングの本質を知る 

• 別の形に書き直してはじめて理解できる 

• 量子技術の古典コンピュータ上での利用 

• 量子コンピュータが普及する前に誰もがどこでも量子計算を利用できるように 

•旧来のシミュレーション手法 (  qbit系) 

• シュレディンガーシミュレーション(状態ベクトルシミュレーション): メモリ・計算量  

• ファインマンシミュレーション(経路数え上げ): 計算量  

• ファインマンサンプリング(量子モンテカルロ): 負符号問題

N
∼ exp N

∼ exp N
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量子回路のテンソルネットワークシミュレーション

• 量子回路 ⇒ テンソルネットワーク 

• 1ビットゲート → 2脚テンソル 

• 2ビットゲート → 4脚テンソル 

• 初期状態・出力状態 → 1脚テンソル(ベクトル)の組 

• 出力状態の振幅 → テンソルネットワークを縮約することで得られる 

• 量子回路では必ず左から右に時間が進む 

• テンソルネットワークの縮約はどのような順番で計算しても結果は同じ 

• テンソルネットワークの古典コンピュータでの計算は非常にコストが高い 

• 縮約順序を工夫することで計算量を劇的に減らせる可能性 

• 近似的な縮約も可能（低ランク近似、テンソルくりこみ群）

12
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量子回路のテンソルネットワークシミュレーション

• Y. A. Liu et al., Closing the “quantum supremacy” gap: Achieving real-

Time simulation of a random quantum circuit using a new sunway 

supercomputer. International Conference for High Performance 

Computing, Networking, Storage and Analysis, SC (2021) 

• Gordon Bell Prize Winner in 2021 

• しかしながらテンソルネットワーク 

規模が大きくなると厳密な縮約は 

結局不可能に 

• 情報圧縮(SVD)を使った高精度近似 

• テンソルネットワーク繰り込み群
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手描き文字認識

•畳み込みニューラルネットワーク(CNN)による機械学習 

• 入力: グレースケール画像 

• 出力: 10次元ベクトル 

• 認識精度 > 99.5% (MNIST)
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テンソルネットワークによる教師あり学習

• テンソルネットワークは多重線形性をもつ 

• いかにして非線形性を入れて表現能力を高めるか？ 

•入力データのエンコード 

•  次元ベクトル( ピクセル画像)を  次元の特徴ベクトルに変換 

•  は2次元局所特徴ベクトルのテンソル積

N N 2N

Φ(x)

15

�

Figure 1: The matrix product state (MPS) decomposition, also known as a tensor train. (Lines
represent tensor indices and connecting two lines implies summation.)

been investigated for machine learning applications such as learning features by decomposing tensor
representations of data [4] and compressing the weight layers of neural networks [5].

While applications of MPS to machine learning have been a success, one aim of the present work is
to have tensor networks play a more central role in developing learning models; another is to more
easily incorporate powerful algorithms and tensor networks which generalize MPS developed by the
physics community for studying higher dimensional and critical systems [13, 14, 15]. But in what
follows, we only consider the case of MPS tensor networks as a proof of principle.

The MPS decomposition is an approximation of an order-N tensor by a contracted chain of N lower-
order tensors shown in Fig. 1. (Throughout we will use tensor diagram notation: shapes represent
tensors and lines emanating from them are tensor indices; connecting two lines implies contraction of
a pair of indices. We emphasize that tensor diagrams are not merely schematic, but have a rigorous
algorithmic interpretation. For a helpful review of this notation, see Cichocki [16].)

Representing the weights W of Eq. (1) as an MPS allows one to efficiently optimize these weights and
adaptively change their number by varying W locally a few tensors at a time, in close analogy to the
density matrix renormalization group (DMRG) algorithm used in physics [17, 8]. Similar alternating
least squares methods for tensor trains have been explored more recently in applied mathematics [18].

This paper is organized as follows: first we propose our general approach and describe an algorithm
for optimizing the weight vector W in MPS form. Then we test our approach on the MNIST
handwritten digit set and find very good performance for remarkably small MPS bond dimensions.
Finally, we discuss the structure of the functions realized by our proposed models.

For researchers interested in reproducing our results, we have made our codes publicly available at:
https://github.com/emstoudenmire/TNML. The codes are based on the ITensor library [19].

2 Encoding Input Data

Tensor networks in physics are typically used in a context where combining N independent systems
corresponds to taking a tensor product of a vector describing each system. With the goal of applying
similar tensor networks to machine learning, we choose a feature map of the form

�s1s2···sN (x) = �s1(x1) ⌦ �s2(x2) ⌦ · · · �sN (xN ) . (2)

The tensor �s1s2···sN is the tensor product of a local feature map �sj (xj) applied to each input
component xj of the N -dimensional vector x (where j = 1, 2, . . . , N ). The indices sj run from 1
to d, where d is known as the local dimension and is a hyper-parameter defining the classification
model. Though one could use a different local feature map for each input component xj , we will
only consider the case of homogeneous inputs with the same local map applied to each xj . Thus each
xj is mapped to a d-dimensional vector, and the full feature map �(x) can be viewed as a vector in a
dN -dimensional space or as an order-N tensor. The tensor diagram for �(x) is shown in Fig. 2. This
type of tensor is said be rank-1 since it is manifestly the product of N order-1 tensors.

For a concrete example of this type of feature map, which we will use later, consider inputs which are
grayscale images with N pixels, where each pixel value ranges from 0.0 for white to 1.0 for black. If
the grayscale value of pixel number j is xj 2 [0, 1], a simple choice for the local map �sj (xj) is

�sj (xj) =
h
cos

⇣⇡

2
xj

⌘
, sin

⇣⇡

2
xj

⌘i
(3)

and is illustrated in Fig. 3. The full image is represented as a tensor product of these local vectors. The
above feature map is somewhat ad-hoc, and is motivated by “spin” vectors encountered in quantum
systems. More research is needed to understand the best choices for �s(x), but the most crucial
property seems to be that ~�(x) · ~�(x0) is a smooth and slowly varying function of x and x0, and
induces a distance metric in feature space that tends to cluster similar images together.
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Figure 2: Input data is mapped to a normalized order N tensor with a rank-1 product structure.

Figure 3: For the case of a grayscale image and d = 2, each pixel value is mapped to a normalized
two-component vector. The full image is mapped to the tensor product of all the local pixel vectors
as shown in Fig. 2.

The feature map Eq. (2) defines a kernel which is the product of N local kernels, one for each
component xj of the input data. Kernels of this type have been discussed previously in Vapnik [20, p.
193] and have been argued by Waegeman et al. [21] to be useful for data where no relationship is
assumed between different components of the input vector prior to learning.

3 Classification Model

In what follows we are interested in classifying data with pre-assigned hidden labels, for which we
choose a “one-versus-all” strategy, which we take to mean optimizing a set of functions indexed by a
label `

f `(x) = W ` · �(x) (4)

and classifying an input x by choosing the label ` for which |f `(x)| is largest.

Since we apply the same feature map � to all input data, the only quantity that depends on the label
` is the weight vector W `. Though one can view W ` as a collection of vectors labeled by `, we
will prefer to view W ` as an order N + 1 tensor where ` is a tensor index and f `(x) is a function
mapping inputs to the space of labels. The tensor diagram for evaluating f `(x) for a particular input
is depicted in Fig. 4.

Because the weight tensor W `
s1s2···sN

has NL · dN components, where NL is the number of labels,
we need a way to regularize and optimize this tensor efficiently. The strategy we will use is to
represent W ` as a tensor network, namely as an MPS which have the key advantage that methods for
manipulating and optimizing them are well understood and highly efficient. An MPS decomposition
of the weight tensor W ` has the form

W `
s1s2···sN

=
X

{↵}

A↵1
s1

A↵1↵2
s2

· · · A`;↵j↵j+1
sj

· · · A↵N�1
sN

(5)

`

=
`

W `

�(x)
f `(x)

Figure 4: The overlap of the weight tensor W ` with a specific input vector �(x) defines the decision
function f `(x). The label ` for which f `(x) has maximum magnitude is the predicted label for x.
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Figure 1: The matrix product state (MPS) decomposition, also known as a tensor train. (Lines
represent tensor indices and connecting two lines implies summation.)

been investigated for machine learning applications such as learning features by decomposing tensor
representations of data [4] and compressing the weight layers of neural networks [5].

While applications of MPS to machine learning have been a success, one aim of the present work is
to have tensor networks play a more central role in developing learning models; another is to more
easily incorporate powerful algorithms and tensor networks which generalize MPS developed by the
physics community for studying higher dimensional and critical systems [13, 14, 15]. But in what
follows, we only consider the case of MPS tensor networks as a proof of principle.

The MPS decomposition is an approximation of an order-N tensor by a contracted chain of N lower-
order tensors shown in Fig. 1. (Throughout we will use tensor diagram notation: shapes represent
tensors and lines emanating from them are tensor indices; connecting two lines implies contraction of
a pair of indices. We emphasize that tensor diagrams are not merely schematic, but have a rigorous
algorithmic interpretation. For a helpful review of this notation, see Cichocki [16].)

Representing the weights W of Eq. (1) as an MPS allows one to efficiently optimize these weights and
adaptively change their number by varying W locally a few tensors at a time, in close analogy to the
density matrix renormalization group (DMRG) algorithm used in physics [17, 8]. Similar alternating
least squares methods for tensor trains have been explored more recently in applied mathematics [18].

This paper is organized as follows: first we propose our general approach and describe an algorithm
for optimizing the weight vector W in MPS form. Then we test our approach on the MNIST
handwritten digit set and find very good performance for remarkably small MPS bond dimensions.
Finally, we discuss the structure of the functions realized by our proposed models.

For researchers interested in reproducing our results, we have made our codes publicly available at:
https://github.com/emstoudenmire/TNML. The codes are based on the ITensor library [19].

2 Encoding Input Data

Tensor networks in physics are typically used in a context where combining N independent systems
corresponds to taking a tensor product of a vector describing each system. With the goal of applying
similar tensor networks to machine learning, we choose a feature map of the form

�s1s2···sN (x) = �s1(x1) ⌦ �s2(x2) ⌦ · · · �sN (xN ) . (2)

The tensor �s1s2···sN is the tensor product of a local feature map �sj (xj) applied to each input
component xj of the N -dimensional vector x (where j = 1, 2, . . . , N ). The indices sj run from 1
to d, where d is known as the local dimension and is a hyper-parameter defining the classification
model. Though one could use a different local feature map for each input component xj , we will
only consider the case of homogeneous inputs with the same local map applied to each xj . Thus each
xj is mapped to a d-dimensional vector, and the full feature map �(x) can be viewed as a vector in a
dN -dimensional space or as an order-N tensor. The tensor diagram for �(x) is shown in Fig. 2. This
type of tensor is said be rank-1 since it is manifestly the product of N order-1 tensors.

For a concrete example of this type of feature map, which we will use later, consider inputs which are
grayscale images with N pixels, where each pixel value ranges from 0.0 for white to 1.0 for black. If
the grayscale value of pixel number j is xj 2 [0, 1], a simple choice for the local map �sj (xj) is

�sj (xj) =
h
cos

⇣⇡

2
xj

⌘
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2
xj
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(3)

and is illustrated in Fig. 3. The full image is represented as a tensor product of these local vectors. The
above feature map is somewhat ad-hoc, and is motivated by “spin” vectors encountered in quantum
systems. More research is needed to understand the best choices for �s(x), but the most crucial
property seems to be that ~�(x) · ~�(x0) is a smooth and slowly varying function of x and x0, and
induces a distance metric in feature space that tends to cluster similar images together.
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Figure 2: Input data is mapped to a normalized order N tensor with a rank-1 product structure.

Figure 3: For the case of a grayscale image and d = 2, each pixel value is mapped to a normalized
two-component vector. The full image is mapped to the tensor product of all the local pixel vectors
as shown in Fig. 2.

The feature map Eq. (2) defines a kernel which is the product of N local kernels, one for each
component xj of the input data. Kernels of this type have been discussed previously in Vapnik [20, p.
193] and have been argued by Waegeman et al. [21] to be useful for data where no relationship is
assumed between different components of the input vector prior to learning.

3 Classification Model

In what follows we are interested in classifying data with pre-assigned hidden labels, for which we
choose a “one-versus-all” strategy, which we take to mean optimizing a set of functions indexed by a
label `

f `(x) = W ` · �(x) (4)

and classifying an input x by choosing the label ` for which |f `(x)| is largest.

Since we apply the same feature map � to all input data, the only quantity that depends on the label
` is the weight vector W `. Though one can view W ` as a collection of vectors labeled by `, we
will prefer to view W ` as an order N + 1 tensor where ` is a tensor index and f `(x) is a function
mapping inputs to the space of labels. The tensor diagram for evaluating f `(x) for a particular input
is depicted in Fig. 4.

Because the weight tensor W `
s1s2···sN

has NL · dN components, where NL is the number of labels,
we need a way to regularize and optimize this tensor efficiently. The strategy we will use is to
represent W ` as a tensor network, namely as an MPS which have the key advantage that methods for
manipulating and optimizing them are well understood and highly efficient. An MPS decomposition
of the weight tensor W ` has the form

W `
s1s2···sN

=
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Figure 4: The overlap of the weight tensor W ` with a specific input vector �(x) defines the decision
function f `(x). The label ` for which f `(x) has maximum magnitude is the predicted label for x.
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分類モデル

• 　 

•  は巨大な(  )行列 

•  をテンソルネットワーク（行列積状態)に分解 

• それぞれのテンソルは  個の要素をもつ（  はテンソル間のボンド次元)

W 10 × 2N

W
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Figure 2: Input data is mapped to a normalized order N tensor with a rank-1 product structure.

Figure 3: For the case of a grayscale image and d = 2, each pixel value is mapped to a normalized
two-component vector. The full image is mapped to the tensor product of all the local pixel vectors
as shown in Fig. 2.

The feature map Eq. (2) defines a kernel which is the product of N local kernels, one for each
component xj of the input data. Kernels of this type have been discussed previously in Vapnik [20, p.
193] and have been argued by Waegeman et al. [21] to be useful for data where no relationship is
assumed between different components of the input vector prior to learning.

3 Classification Model

In what follows we are interested in classifying data with pre-assigned hidden labels, for which we
choose a “one-versus-all” strategy, which we take to mean optimizing a set of functions indexed by a
label `

f `(x) = W ` · �(x) (4)

and classifying an input x by choosing the label ` for which |f `(x)| is largest.

Since we apply the same feature map � to all input data, the only quantity that depends on the label
` is the weight vector W `. Though one can view W ` as a collection of vectors labeled by `, we
will prefer to view W ` as an order N + 1 tensor where ` is a tensor index and f `(x) is a function
mapping inputs to the space of labels. The tensor diagram for evaluating f `(x) for a particular input
is depicted in Fig. 4.

Because the weight tensor W `
s1s2···sN

has NL · dN components, where NL is the number of labels,
we need a way to regularize and optimize this tensor efficiently. The strategy we will use is to
represent W ` as a tensor network, namely as an MPS which have the key advantage that methods for
manipulating and optimizing them are well understood and highly efficient. An MPS decomposition
of the weight tensor W ` has the form
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Figure 4: The overlap of the weight tensor W ` with a specific input vector �(x) defines the decision
function f `(x). The label ` for which f `(x) has maximum magnitude is the predicted label for x.
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Figure 3: For the case of a grayscale image and d = 2, each pixel value is mapped to a normalized
two-component vector. The full image is mapped to the tensor product of all the local pixel vectors
as shown in Fig. 2.

The feature map Eq. (2) defines a kernel which is the product of N local kernels, one for each
component xj of the input data. Kernels of this type have been discussed previously in Vapnik [20, p.
193] and have been argued by Waegeman et al. [21] to be useful for data where no relationship is
assumed between different components of the input vector prior to learning.

3 Classification Model

In what follows we are interested in classifying data with pre-assigned hidden labels, for which we
choose a “one-versus-all” strategy, which we take to mean optimizing a set of functions indexed by a
label `

f `(x) = W ` · �(x) (4)

and classifying an input x by choosing the label ` for which |f `(x)| is largest.

Since we apply the same feature map � to all input data, the only quantity that depends on the label
` is the weight vector W `. Though one can view W ` as a collection of vectors labeled by `, we
will prefer to view W ` as an order N + 1 tensor where ` is a tensor index and f `(x) is a function
mapping inputs to the space of labels. The tensor diagram for evaluating f `(x) for a particular input
is depicted in Fig. 4.

Because the weight tensor W `
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has NL · dN components, where NL is the number of labels,
we need a way to regularize and optimize this tensor efficiently. The strategy we will use is to
represent W ` as a tensor network, namely as an MPS which have the key advantage that methods for
manipulating and optimizing them are well understood and highly efficient. An MPS decomposition
of the weight tensor W ` has the form
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Figure 4: The overlap of the weight tensor W ` with a specific input vector �(x) defines the decision
function f `(x). The label ` for which f `(x) has maximum magnitude is the predicted label for x.
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Figure 5: Approximation of the weight tensor W ` by a matrix product state. The label index ` is
placed arbitrarily on one of the N tensors but can be moved to other locations.

and is illustrated in Fig. 5. Each A tensor has d m2 elements which are the latent variables parame-
terizing the approximation of W ; the A tensors are in general not unique and can be constrained to
bestow nice properties on the MPS, like making the A tensors partial isometries.

The dimensions of each internal index ↵j of an MPS are known as the bond dimensions and are the
(hyper) parameters controlling complexity of the MPS approximation. For sufficiently large bond
dimensions an MPS can represent any tensor [22]. The name matrix product state refers to the fact
that any specific component of the full tensor W `

s1s2···sN
can be recovered efficiently by summing

over the {↵j} indices from left to right via a sequence of matrix products (the term “state” refers to
the original use of MPS to describe quantum states of matter).

In the above decomposition Eq. (5), the label index ` was arbitrarily placed on the tensor at some
position j, but this index can be moved to any other tensor of the MPS without changing the overall
W ` tensor it represents. To do so, one contracts the tensor at position j with one of its neighbors,
then decomposes this larger tensor using a singular value decomposition such that ` now belongs to
the neighboring tensor—see Fig. 7(a).

4 “Sweeping” Optimization Algorithm

Inspired by the very successful DMRG algorithm developed for physics applications [17, 8], here we
propose a similar algorithm which “sweeps” back and forth along an MPS, iteratively minimizing the
cost function defining the classification task.

To describe the algorithm in concrete terms, we wish to optimize the quadratic cost
C = 1

2

PNT

n=1

P
`(f

`(xn) � y`
n)2 where n runs over the NT training inputs and y`

n is the vector
of desired outputs for input n. If the correct label of xn is Ln, then yLn

n = 1 and y`
n = 0 for all other

labels ` (i.e. a one-hot encoding).

Our strategy for minimizing this cost function will be to vary only two neighboring MPS tensors at a
time within the approximation Eq. (5). We could conceivably just vary one at a time, but varying two
tensors makes it simple to adaptively change the MPS bond dimension.

Say we want to improve the tensors at sites j and j + 1. Assume we have moved the label index `
to the MPS tensor at site j. First we combine the MPS tensors A`

sj
and Asj+1 into a single “bond

tensor” B
↵j�1`↵j+1
sjsj+1 by contracting over the index ↵j as shown in Fig. 6(a).

Next we compute the derivative of the cost function C with respect to the bond tensor B` in order to
update it using a gradient descent step. Because the rest of the MPS tensors are kept fixed, let us show
that to compute the gradient it suffices to feed, or project, each input xn through the fixed “wings” of
the MPS as shown on the left-hand side of Fig. 6(b) (connected lines in the diagram indicate sums
over pairs of indices). The result is a projected, four-index version of the input �̃n shown on the
right-hand of Fig. 6(b). The current decision function can be efficiently computed from this projected
input �̃n and the current bond tensor B` as

f `(xn) =
X

↵j�1↵j+1

X

sjsj+1

B↵j�1`↵j+1
sjsj+1

(�̃n)
sjsj+1

↵j�1`↵j+1
(6)

or as illustrated in Fig. 6(c). The gradient update to the tensor B` can be computed as

�B` = � @C

@B`
=

NTX

n=1

(y`
n � f `(xn))�̃n . (7)

4

s1 s2 s3 s4 s5 s6

=
�s1 �s2 �s3 �s4 �s5 �s6

�

Figure 2: Input data is mapped to a normalized order N tensor with a rank-1 product structure.

Figure 3: For the case of a grayscale image and d = 2, each pixel value is mapped to a normalized
two-component vector. The full image is mapped to the tensor product of all the local pixel vectors
as shown in Fig. 2.

The feature map Eq. (2) defines a kernel which is the product of N local kernels, one for each
component xj of the input data. Kernels of this type have been discussed previously in Vapnik [20, p.
193] and have been argued by Waegeman et al. [21] to be useful for data where no relationship is
assumed between different components of the input vector prior to learning.

3 Classification Model

In what follows we are interested in classifying data with pre-assigned hidden labels, for which we
choose a “one-versus-all” strategy, which we take to mean optimizing a set of functions indexed by a
label `

f `(x) = W ` · �(x) (4)

and classifying an input x by choosing the label ` for which |f `(x)| is largest.

Since we apply the same feature map � to all input data, the only quantity that depends on the label
` is the weight vector W `. Though one can view W ` as a collection of vectors labeled by `, we
will prefer to view W ` as an order N + 1 tensor where ` is a tensor index and f `(x) is a function
mapping inputs to the space of labels. The tensor diagram for evaluating f `(x) for a particular input
is depicted in Fig. 4.

Because the weight tensor W `
s1s2···sN

has NL · dN components, where NL is the number of labels,
we need a way to regularize and optimize this tensor efficiently. The strategy we will use is to
represent W ` as a tensor network, namely as an MPS which have the key advantage that methods for
manipulating and optimizing them are well understood and highly efficient. An MPS decomposition
of the weight tensor W ` has the form

W `
s1s2···sN

=
X

{↵}

A↵1
s1

A↵1↵2
s2

· · · A`;↵j↵j+1
sj

· · · A↵N�1
sN

(5)

`

=
`

W `

�(x)
f `(x)

Figure 4: The overlap of the weight tensor W ` with a specific input vector �(x) defines the decision
function f `(x). The label ` for which f `(x) has maximum magnitude is the predicted label for x.

3E. M. Stoudenmire and D. J. Schwab, Advances in Neural Information Processing Systems, 29, 4799. (2016)



テンソルネットワークの量子回路への変換

• ,  の場合 

• テンソルの最適化 → 量子回路のパラメータの最適化 → 量子・古典ハイブリッドアルゴリズム

N = 8 m = 8
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量子ビット効率のよい実装

• 量子ビットを初期化して再利用 

• 必要となる物理量子ビット数は、入力サイズ  に依存しない！N
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(a)

(b)

FIG. 10. Qubit-e�cient scheme for evaluating (a) discrimina-
tive and (b) generative tree models with V = 2 virtual qubits
and N = 16 inputs or outputs. Note that the two patterns are
the reverse of each other. In (a) qubits indicated with hash
marks are measured and the measurement results discarded.
These qubits are then reset and prepared with additional in-
put states. In (b) measured qubits are recorded and reset to
a reference state h0|.

This is the number of qubit lines connecting each subtree
to higher nodes in the tree. Viewed as a tensor network,
the bond dimension D, or dimension of the internal ten-
sor indices, is given by D = 2V .

For example, the tree shown in Fig. 7 has V = 1 and a
bond dimension of D = 2. The tree shown in Fig. 10 has
V = 2 and D = 4. When discussing these models in gen-
eral terms, it su�ces to consider only unitary operations
acting on 2V qubits, since at each node of the tree, two
subtrees (two sets of V qubits) are entangled together.

Given only the ability to perform state preparation
and unitary operations, it would take N physical qubits
to evaluate a discriminative tree network model on N

inputs. However, if we also allow the step of measure-
ment and resetting of certain qubits, then the number of
physical qubits Q required to process N inputs given V

virtual states passing between each node can be signifi-
cantly reduced to just Q(N, V ) = V lg(2N/V ).

To see why, consider the circuit showing the most
qubit-e�cient scheme for implementing the discrimina-
tive case Fig. 10(a). For a given V , the number of in-
puts that can be processed by a single unitary is 2V .
Then V of the qubits can be measured and reused, but
the other V qubits must remain entangled. So only
V new qubits must be introduced to process 2V more
inputs. From this line of reasoning and the observa-
tion that Q(2V, V ) = 2V , one can deduce the result
Q(N, V ) = V lg(2N/V ).

For generative tree network models, generating N out-

(a)

(b)

FIG. 11. Qubit-e�cient scheme for evaluating (a) discrim-
inative and (b) generative matrix product state models for
an arbitrary number of inputs or outputs. The figure shows
the case of V = 3 qubits connecting each node of the net-
work. When evaluating the discriminative model, one of the
qubits is measured after each unitary is applied and the re-
sult discarded; the qubit is then prepared with the next input
component. To implement the generative model, one of the
qubits is measured after each unitary operation and the result
recorded. The qubit is then reset to the state h0|.

puts with V virtual qubits requires the same number of
physical qubits as for the discriminative case; this can be
seen by observing that the pattern of unitaries is just the
reverse of the discriminative case for the same N and V .
Fig. 10 shows the most qubit-e�cient way to sample a
generative tree models for the case of V = 2 virtual and
N = 16 output qubits, requiring only Q = 8 physical
qubits.

Though a linear growth of the number of physical
qubits as a function of virtual qubit number V may
seem more prohibitive compared to the logarithmic scal-
ing with N , even a small increase in V would lead to
a significantly more expressive model. From the point
of view of tensor networks the expressivity of the model
is usually measured by the bond dimension D = 2V .
In terms of the bond dimension, the number of qubits
needed thus scales only as Q(N, D) ⇠ lg(D) lg(N). The
largest bond dimensions used in state-of-the-art classical
tensor network calculations are around D = 215 or about
30, 000. So for V = 16 or more virtual qubits one would
quickly exceed the power of any classical tensor network
calculation we are aware of.

B. Qubit-E�cient Matrix Product Models

A matrix product state (MPS) tensor network is a spe-
cial case of a tree tensor network that is maximally un-
balanced. This gives an MPS certain advantages without
sacrificing expressivity for one-dimensional distributions,
as measured by the maximum entanglement entropy it
can carry across bipartitions of the input or output space,
meaning a division of (x1, . . . , xj) from (xj+1, . . . , xN ).

W. Huggins, et al.Quantum Science and Technology, 4, 1 (2019)



量子アルゴリズムの本質

• アダマールゲートなどを使い、多くの状態の重ね合わせを準備 

• この状態で非選択的射影測定を行うとエントロピーは  (量子ビット数に比例) 

•欲しい答えが大きな振幅を持つように状態をユニタリー操作し干渉させる 

• 量子状態のエントロピーはゼロのまま 

• 非選択的射影測定をした場合のエントロピーは減少 

• 一種のデータ圧縮? 

•選択的射影測定する(測定して結果を見る)と正解が高い確率で得られる 

• エントロピーのできるだけ小さな状態からのサンプリング 

• 一種の情報抽出 

•⇒ 量子インスパイアードアルゴリズム

O(N )
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テンソルネットワーク形式でのモンテカルロ法

•経路積分に基づく従来の量子モンテカルロ法 

• 実時間発展の場合には深刻な負符号問題に直面 

• 量子回路をテンソルネットワークとして表現 

• テンソルネットワーク表現のままサンプリングを実行 

• 精度を落とさず高速化 

• 並列性 

• 特異値分解に起因する系統誤差を消去 

• 実時間発展・フラストレーション・フェルミ統計における負符号問題を解決
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まとめ「量子埋め込み」

• 「大きなテンソル」に「テンソルネットワーク」を埋め込む 

• 「大きなテンソル」 = 

• 量子状態、量子回路、古典コンピュータ、機械学習... 

• 「テンソルネットワーク」　「ボルツマンマシン」= 

• 近似波動関数・試行波動関数、古典模型・量子模型、量子回路... 

• 古典コンピュータに量子回路を埋め込む 

• 量子回路シミュレータ ⇒ 量子コンピュータを使わずに量子AIを 

• 量子状態を量子状態として取り出す ⇒ 量子・古典インターフェース 

• 量子回路にテンソルネットワークを埋め込む 

• 多項式時間で縮約可 ⇒ 古典・量子模型の量子シミュレーション 

•異なる量子回路間の接続 

• 前処理・変換の重要性 

• 量子回路やテンソルネットワークの書き換え、確率的な表現、観測との組み合わせ... 

• 量子コンピュータのロードマップ
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