

アジェンダ

• DDNとHPCストレージ

• 2021実績(Lustreのみ)

• HW新製品紹介

• EXA6新機能

DDNは世界最大手の 非上場ストレージベンダー

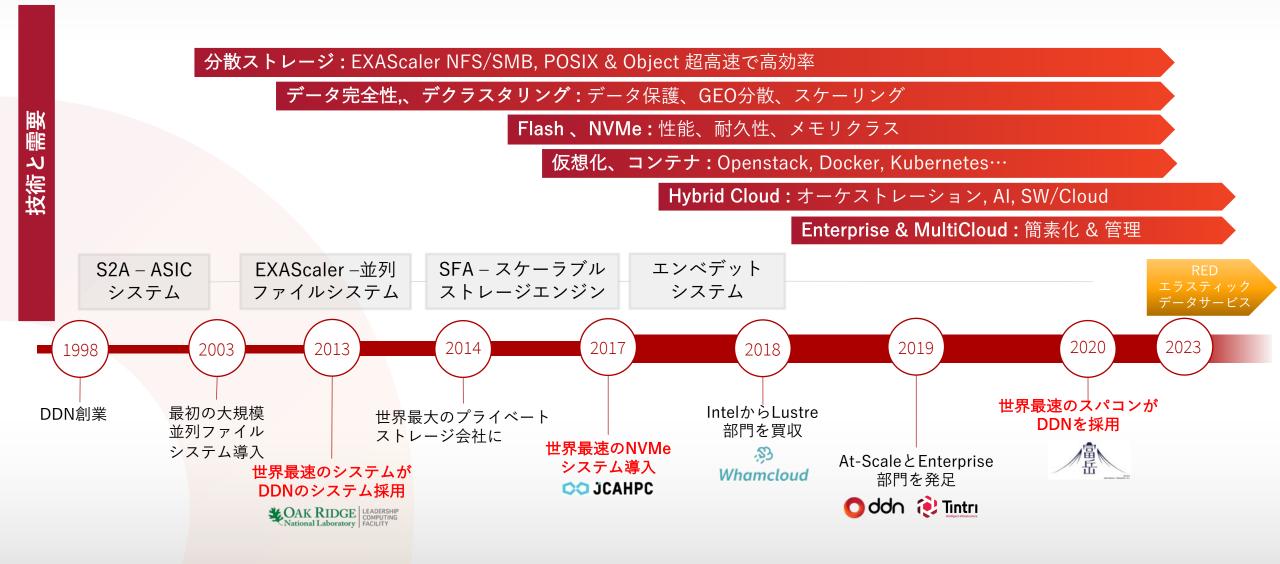
世界規模のマーケットリーダー

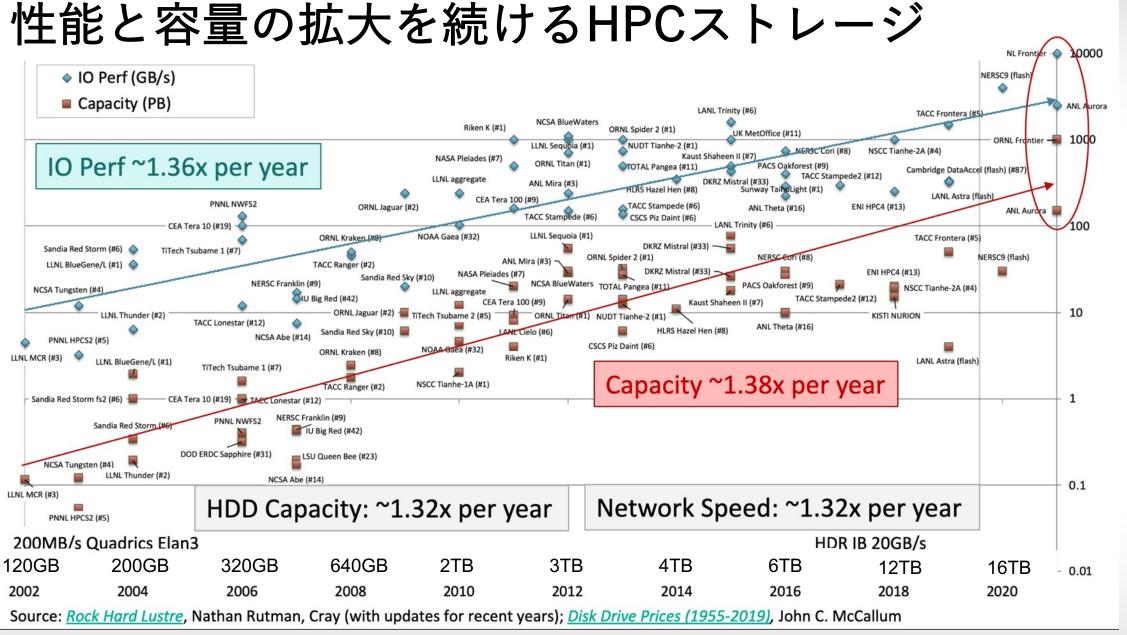
- 20年以上に渡る業界リーダーシップ
- 10,000以上の顧客
- 世界10拠点にテクノロジーセンターを設置

At Scale

AIストレージシステム 大規模HPCストレージ スケーラブルデータ管理

Enterprise


仮想環境


ソフトウェアデファインド統合ストレージ 高性能統合ストレージ

0

DDNの20年に渡る技術革新

参照:「Lustre:The Next 20 Years(次の20年)」、ISC19、Andreas Dilger

指数関数的に増加する大規模データ処理の需要

Al & Analytics

自立型IT のマーケット規模は 2025年に\$25B (USD)

75%のAIシステムを採用しているところは今後もAI環境のための予算が増加

Government/Academia

\$150B (USD)規模がCovid19 関連の研究のために利用データインテンシブのHPCでは 7% 平均成長率データ解析17%の成長率

Web/Cloud

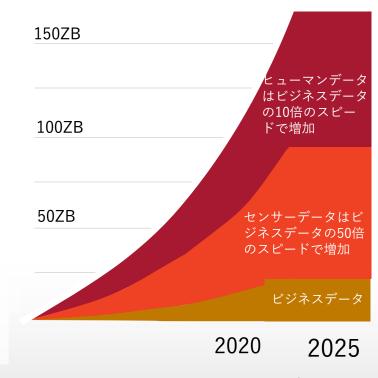
2025年には世界の約半分の データがクラウドに 2025年にはインターネットユ ーザデータは300%の増加

Enterprise at Scale

データ戦略における迅速な採用。ただ、74%がデータアクセスの困難さに直面。

"Data is the critical ingredient of AI projects, and data access and data visibility are major concerns for AI adopters" – 451 Research

26%


Yes, we are unable to get access to the required data

Difficulty Accessing Data

21%

- Yes, we have considerable difficul
- Yes, we have some difficulty
- No, we have no difficulty

爆発的に増加するヒューマンデータとセンサーデータ

*451 Research – AI & Machine Learning Infrastructure 2020 *inside Big Data

101 Noscaren 7/1 & Machine Ecanning Infrastructure 2020 - Morace Dig De

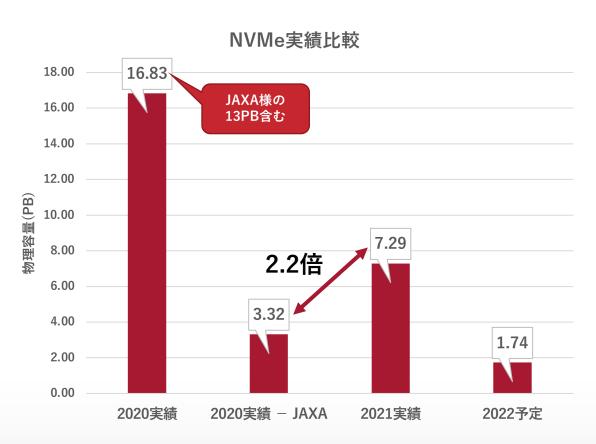
SSD Expands, but HDD Does Not Die - Gartner ddn

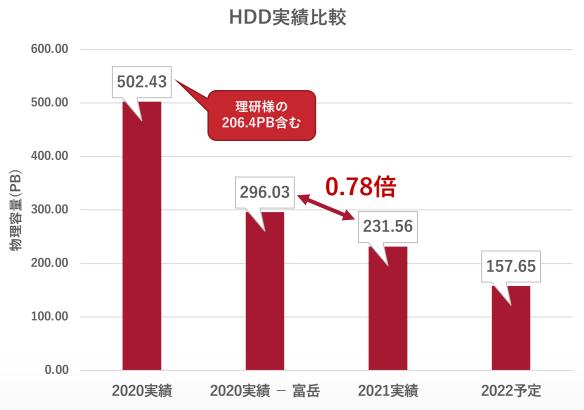
- DDNは近年、大規模HPCシステムに多くのNVMeのストレージを提供
- ガートナーの予測では:
 - 。2030年、エンタープライズにおけるストレージの70%はHDD
 - HDDとSSDのギャップは供給と容量あたりのコスト
 - 。これまでは~25%で推移していた 2020年のNANDベースSSDの生産コストの削減は10-15%に低下
 - 。2030年までにすべてのエンタープライズストレージがNANDベースになるのは懐疑的
- ・今後もHDDとNVMe/SSDとのハイブリッドは非常に重要
 - 。DDNはすでに多くのハイブリッド大規模HPCシステムを導入
 - 阪大SQUID、産総研ABCI2.0、東大Westeria/BDEC-01,mdx、JAXA TOKI-SORA、JAMSTEC ES4など

2021年実績 (Lustreのみ)

2021年導入実績

お客様	NVMe物理容量 (TB)	HDD物理容量 (PB)	ファイルシステム
某省庁		43.4	EXAScaler
東京大学HGC	307.2	36.1	EXAScaler
東京大学情報基盤センター mdx	2027.52	35.784	EXAScaler
東京大学情報基盤センター Westeria/BDEC-01	1413.12	34.176	FEFS
大阪大学サイバーメディアセンター SQUID	1536	26.88	EXAScaler
産業技術総合研究所(AIST) ABCI2.0	529.9	14.4	EXAScaler
国立環境研究所(NIES) GOSAT/GOSAT-2 プロジェクト		13.87	EXAScaler
理化学研究所Spring-8		5.6	EXAScaler
国立遺伝学研究所(NIG) DDBJ		4.816	EXAScaler
名古屋大学宇宙地球環境研究所(ISEE)		4.14	EXAScaler
某機構		3.1	EXAScaler
情報通信研究機構(NICT)		3.09	EXAScaler
マクロジェン・ジャパン		3.0	EXAScaler
某民間企業	161.28	1.62	EXAScaler
某研究所		1.58	EXAScaler
北陸先端科学技術大学院大学(JAIST)	322.5		EXAScaler
理化学研究所R-CCS	307.2		EXAScaler
某民間企業	276.48		EXAScaler
某民間企業	161.28		EXAScaler
某民間企業	161.28		EXAScaler
某民間企業	88.32		EXAScaler
合計	7.29PB	231.6PB	




2022年導入予定

お客様	NVMe物理容量 (TB)	HDD物理容量 (PB)	ファイルシステム
某機構		67.0	EXAScaler
東京大学情報基盤センターIpomoea-01		34.4	EXAScaler
某機構		19.58	EXAScaler
情報通信研究機構(NICT)	88	12.9	EXAScaler
東京大学HGC		9.0	EXAScaler
某大学		6.00	EXAScaler
某民間企業		2.56	EXAScaler
某民間企業		1.8	EXAScaler
某機構		1.58	EXAScaler
沖縄科学技術大学院大学(OIST)		1.5	EXAScaler
某民間企業		1.2	EXAScaler
某研究機関	1000	0.13	EXAScaler
某民間企業	737.28		EXAScaler
合計	1.73PB	157.7PB	

2020年との比較

HW新製品紹介

New "X2" Platform

	ES200NVX2	ES400NVX2		
	ddn	ddn		
Class / Controller	2U All NVMe Platform, Active/Active Dual Controller			
СРИ	2x Ice Lake CPUs 4x Ice Lake CPUs			
NVMe	24 Drive (PCI Gen 4)			
NVMe Performance	~46GB/s, 1.5M IOP/s	~90GB/s, 3M IOP/s		
HDD	2022 Q3以降:Max 360 Drive (4x SAS4 90Slot Enc)	2021 Q3以降: Max 360 Drive (4x SAS3 90Slot Enc) 2022 Q3以降: Max 900 Drive (10x SAS4 90Slot Enc)		
HDD Performance	2022 Q3以降 : ~46GB/s	2021 Q3以降 : ~40GB/s 2022 Q3以降 : ~90GB/s		
Connectivity	HDR IB (200Gb/100Gb) (4) Or 100/200 GbE (4)	HDR IB (200Gb/100Gb) (8) Or 100/200 GbE (8)		

ES400NVX2 SAS-3 Expansion Option (2021~2022 1H)

ES400NVX2 SAS3

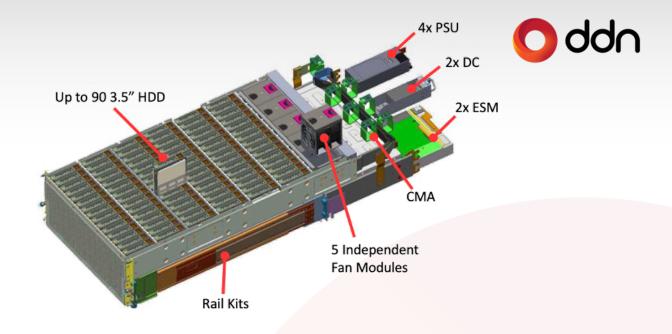
Platform	ES400NVX2 SAS-3
NVMe Slots Capacity max (raw)	24 368 TB (15.36TB NVMe)
SAS Chassis Slots Capacity max (raw)	4 360 6.4 PB (18TB HDD)

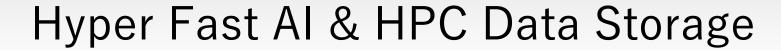
100% NVME without use of SAS expansion is also supported

Planned X2 SAS-4 Expansion Options (2022 Q3以降)

ES200NVX2 ES400NVX2

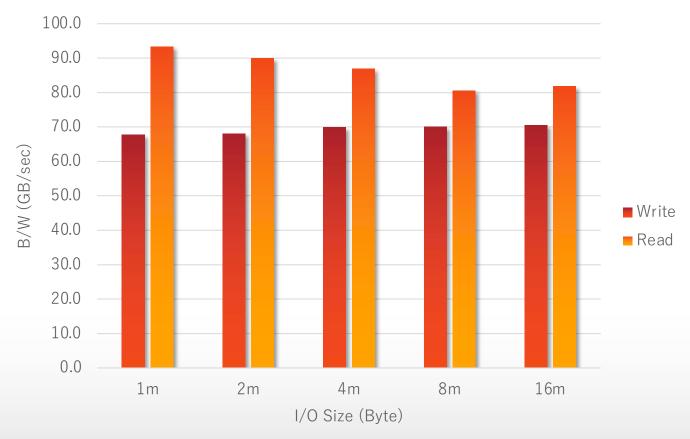
ES200NVX2 SAS-4		Platform	ES400NVX2 SAS-4			
24	24	24	NVMe Slots	24	24	24
732 TB	732 TB	732 TB	Capacity	732 TB	732 TB	732 TB
(30TB NVMe)		max (raw)	(30TB NVMe)			
1	2	4	SAS Chassis	6	8	10
90	180	360	Slots	540	720	900
1.8 PB	3.6 PB	7.2 PB	Capacity	10.8 PB	14.4 PB	18 PB
(2	20TB HDD))	max (raw)		20TB HDD))




SS9024 ENCLOSURE

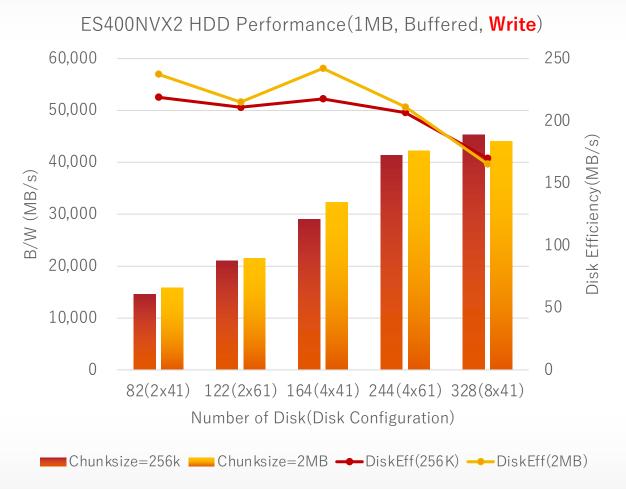
SAS4サポートエンクロージャ

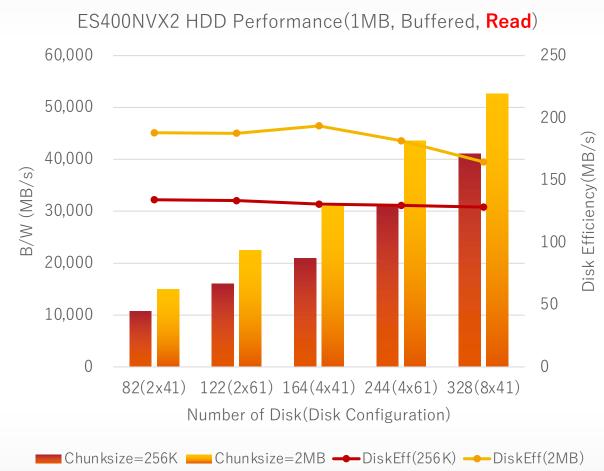
SS9024 ENCLOSURE SPECIFICATIONS			
Chassis	Redundant 4U		
Disk Slots	90 top accessible 3.5" drive slots, SAS-3 (12G)		
PSU/Cooling	4 PSUs (2+2 redundant), 5 Independent Fans		
Monitoring	LCD displays for providing system status Per drive activity LEDs		
IO Modules	2x IO Modules. SAS-4 (24G) 4x 4 lane SAS 24Gb Mini SAS HD ports on each IO Module		



世界最速ストレージ

- Over 90GB/s for reads
- Over 65GB/s for writes


All Flashパフォーマンス



ES400NVX2 HDD Performance (HDD/w SAS3)

Chunksize: RAIDのChunksize DiskEff: Disk 1本あたりの性能

WriteはParity 2本分のWrite性能を付与するため、性能の1.2倍をDisk本数で除した値 Readは性能をDisk本数で除した値

EXA6新機能

EXA6の主な新機能

exao

Lustre2.14をベースとした新EXAScalerバージョンEXA6をリリース

Security · Compliance

• Client-side file Encryption fscrypt APIによるファイル暗号化に対応。ディレクトリ単位で暗号化を適用可能

Performance

- ・ シングルスレッド性能の向上 "15GB/sec"
- ロックレスIO
 Direct IO時、Server, Client間でファイルlockを行わないことでオーバヘッドを削除し低Latencyアクセスを実現
- Lustre Over Striping
 OST数以上のストライプ数を設定可能→Single Shared Fileの性能向上

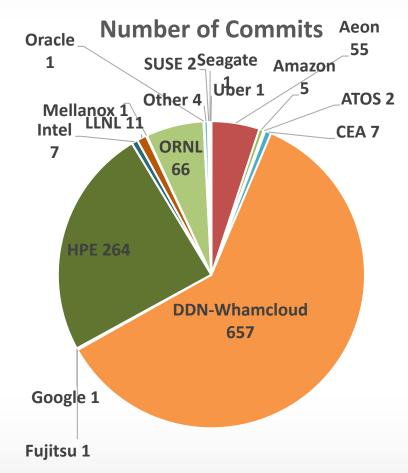
Cache Management

- Hot Pools
 NVMe OST、HDD OST間のTieringを実現
- Hot Nodes
 クライアントのローカルストレージを Cacheとして利用
 IOPSが必要なアプリケーションの性能向上

Efficiency

OST Pool Quota

1つのファイルシステムに混在する異なるデバイス(HDD, NVMe) 毎にそれぞれOST Poolを作成して、異なるQuota設定可能


Auto Directory Split

同一ディレクトリ内でinode数が設定値を超えた時点から複数の MDTを自動的に利用

Lustre 2.14 – Communityへのコントリビューション

- 2021/2 GA
- OS support
 - RHEL 8.3 servers/clients
 - RHEL 8.3/SLES15 SP2/Ubuntu 20.04 clients
- Interop/upgrades from 2.13 and latest Lustre 2.12.x
- 多くの新機能
 - Client-side Data Encryption (LU-12275)
 - OST Pool Quotas (11023)
 - DNE Auto Restriping (LU-11025)
- http://wiki.lustre.org/Release_2.14.0

Data courtesy of Dustin Leverman (ORNL)

Lustre Striping

root@ubuntu1804-1:~# lfs setstripe -c -1 /ai200x1/shared-file

("-c -1"は全てのOST)

root@ubuntu1804-1:~# lfs getstripe /ai200x1/shared-file

/ai200x1/sharedfile

lmm_stripe_count: 4

lmm_stripe_size: 1048576

lmm pattern: raid0

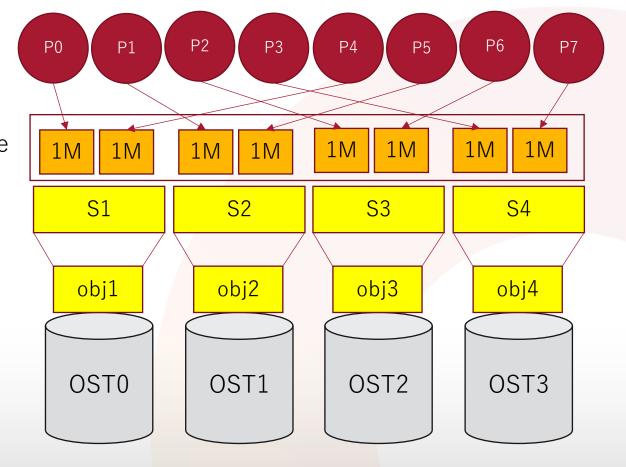
lmm_layout_gen: 0

shared-file

0

lmm_stripe_offset: 1

obdidx objid objid group


 1
 2
 0x2
 0

 3
 2
 0x2
 0

 0
 2
 0x2
 0

0x2

プロセス数 > ストライプ数の場合 OST オブジェクトに対する競合が発生

Lustre OverStriping

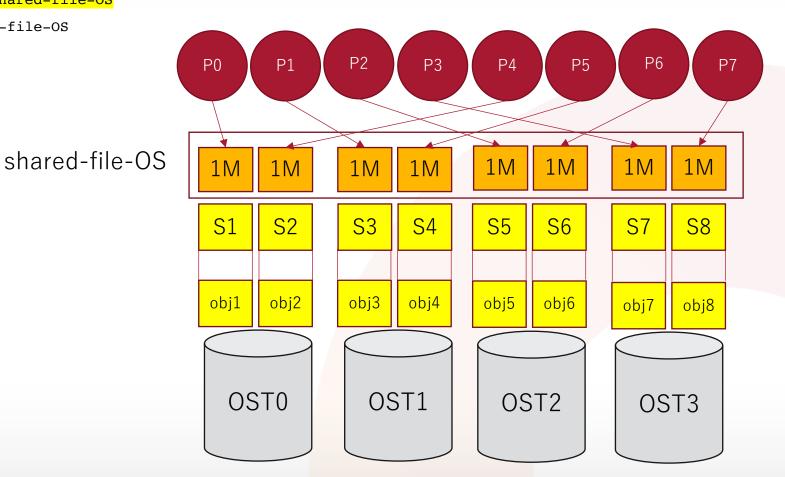
root@ubuntu1804-1:~# lfs setstripe -C 8 /ai200x1/shared-file-OS

root@ubuntu1804-1:~# lfs getstripe /ai200x1/shared-file-OS

/ai200x1/shared-file-OS

lmm_stripe count: 8

lmm stripe size: 1048576

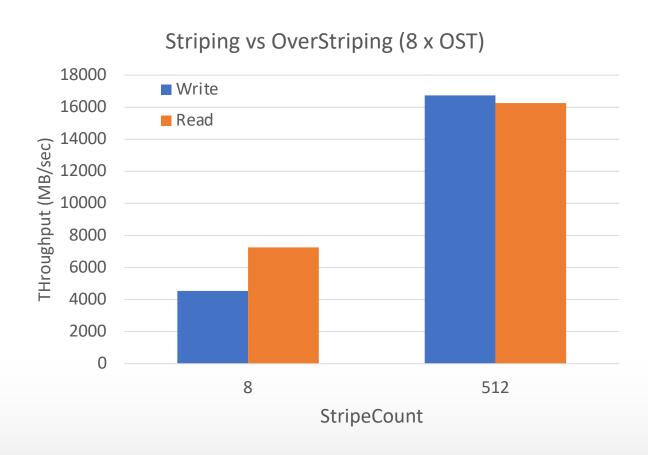

lmm pattern: raid0,overstriped

lmm layout gen: 0

lmm stripe offset: 0

obdidx objid objid group

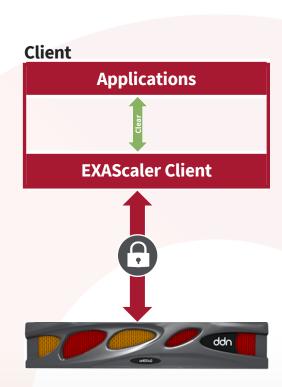
0	4	0x4	0
2	4	0x4	0
1	4	0x4	0
3	4	0x4	0
0	5	0x5	0
2	5	0x5	0
1	5	0x5	0
3	5	0x5	0



OverStriping機能によってOST数以上のストライプ数を設定可能になりオブジェクトアクセスにおける競合を排除

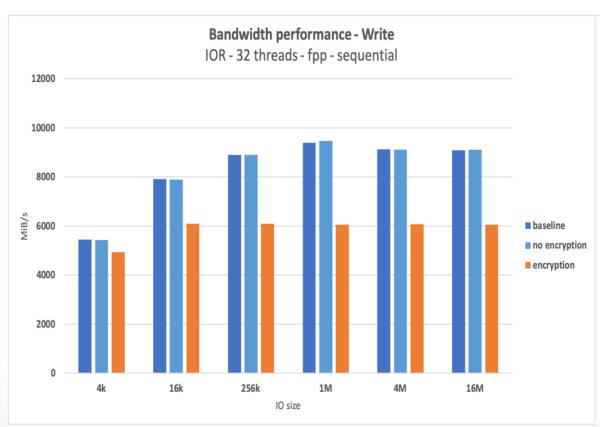
Striping vs Over Striping性能比較

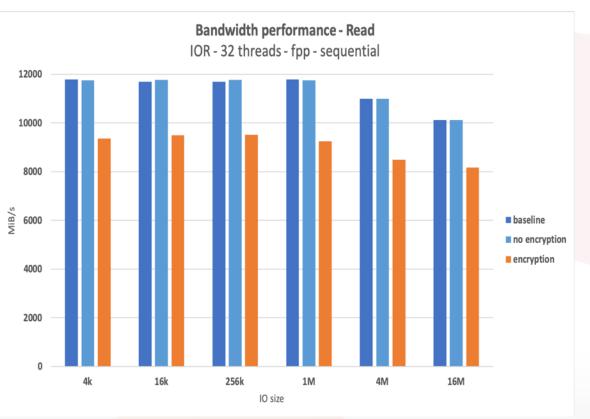
1つのファイルに複数プロセスでアクセスした場合の性能比較



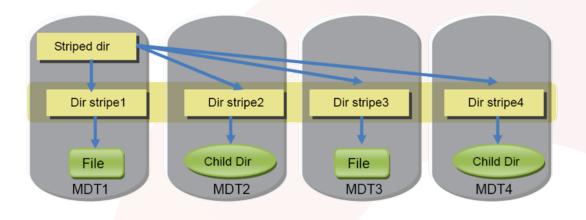
- ES7990(160 x HDD, 2 x OSS, 8 x OST)
- 32クライアント, **512プロセス**
- 1MB, Single Shared File
 # ior/src/ior -w -r -C -g -i 3 -vv -s 13000 -b 1m -t 1m -a POSIX -e
- ・ストライプカウント8と512で比較

Lustreにおける暗号化




- ユースケース:
 - 。各ユーザの特定のディレクトリに含まれるファイルに対する機密性を提供
- ゴール:
 - 。クライアントおよびサーバ間でデータ保護
 - 。保存データの保護
- ソリューション
 - 。fscrypt kernel APIに準拠
 - ext4, F2FS, and UBIFSにて使用されているAPI
 - 基本原則: Page Cacheに含まれるPageはクリアテキストデータを含む
 - 。fscrypt ユーザスペースツールを活用
- Lustreにおける実装
 - 。暗号化の方法
 - Lustre Clientにて透過的にWrite時に暗号化、Read時に復号化を実施
 - 。ディレクトリにおけるポリシーの適応方法
 - fscryptユーザスペースを使った新しいIOCTLのサポート
 - アトミックな暗号化コンテキストの処理

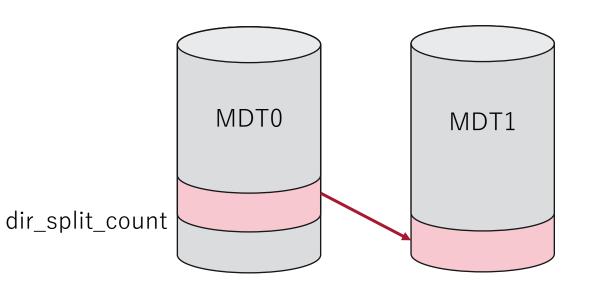
Lustre Client Encryption – bandwidth performance



従来のDNE(Distributed Namespace Environment) つめへ

- 2.14以前のLustreは2つのタイプのDNEをサポート
 - 。 Remote Directory(DNE1) ≥ Striped Directory(DNE2)
 - 。いずれも動的に設定できDNE1とDNE2の混在も可能

Ifs mkdir -i 0 /ai200x1/mdt0 # Ifs mkdir -i 1 /ai200x1/mdt1

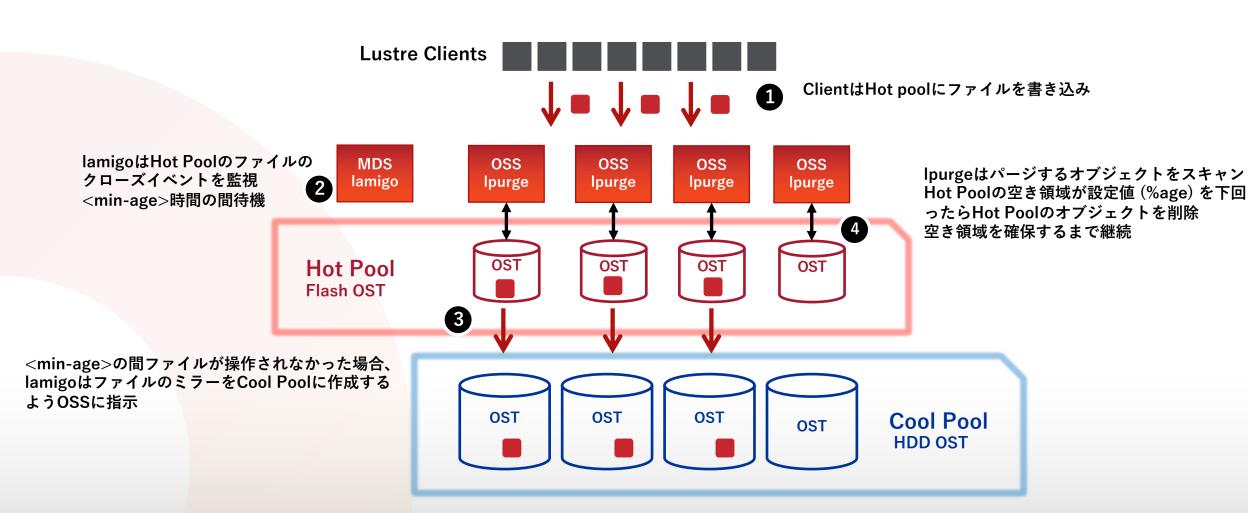


Striped Directory

Ifs mkdir -c 4 /ai200x1/striped-dir # Ifs mkdir -c 4 -D /ai200x1/ striped-dir

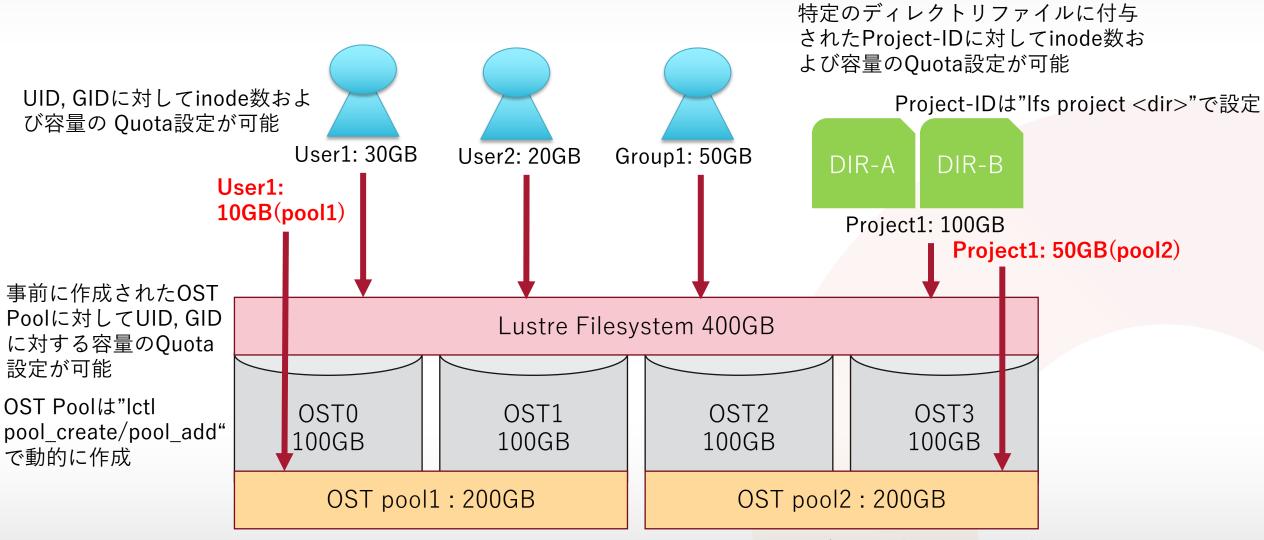
DNE Auto Rebalancing (2.14で追加)

[root@vexa01 ~]# lctl get_param mdt.*.enable_dir_auto_split mdt.*.dir_split_count mdt.*.dir_split_delta mdt.ai200x1-MDT0000.enable_dir_auto_split=1 mdt.ai200x1-MDT0000.dir_split_count=50000 mdt.ai200x1-MDT0000.dir_split_delta=2


enable_dir_auto_split=1(Auto rebalancing)が有効の場合、 同一ディレクトリ内でinode数がdir_split_countを超えた時点から dir_split_deltaに基づき複数のMDTに自動的に分散される

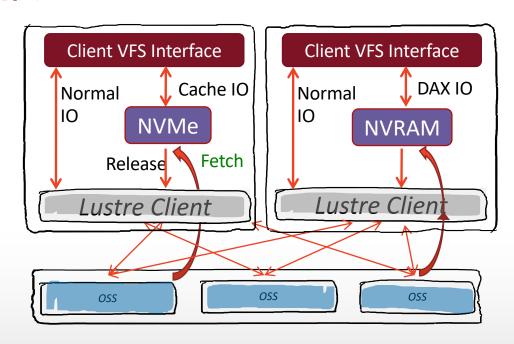
閾値を設定することでディレクトリのサイズが大きくなる前に複数のMDTに自動的に分散し性能劣化を防ぐ

Hot Pools



ストレージプール間のTieringを実現

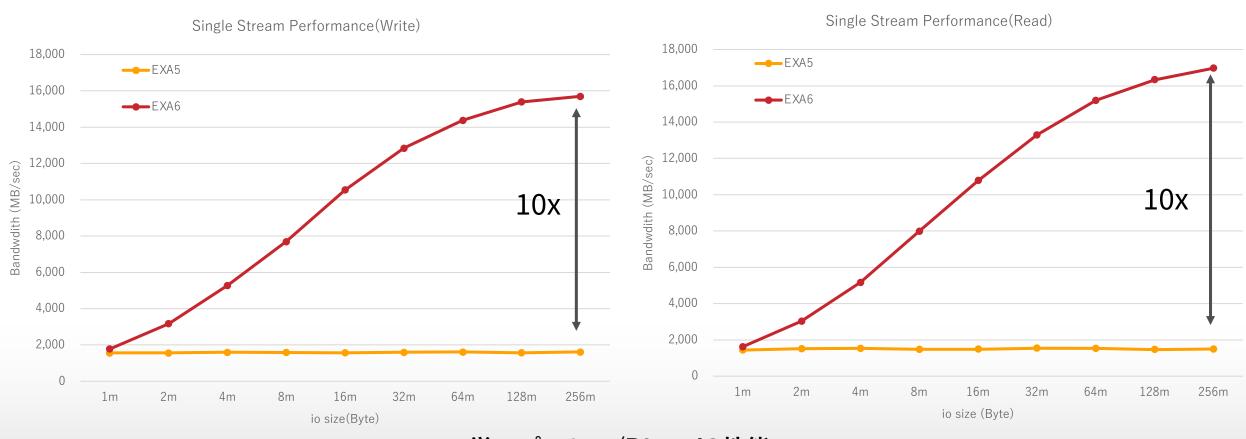
OST Pool Quota



1つのファイルシステムに混在する異なるデバイス(HDD, NVMe)毎に それぞれOST Poolを作成して、異なるQuota設定可能

Hot Nodes

- ・クライアントのローカルストレージとのインテグレーション
 - 。レイテンシの削減, ネットワークトラフィックの削減
 - 。DAX(Direct Access)可能なNVDIMMデバイスとインテグレーション
- ReadおよびWriteの透過的なキャッシュを提供
 - 。Read Onlyキャッシュもサポート
- ・ワークフロー全体の最適化に活用
 - 。同一クライアントでのデータの再利用
 - 。データの先読みにて、IOと計算利用の ネットワークリソースの分散化

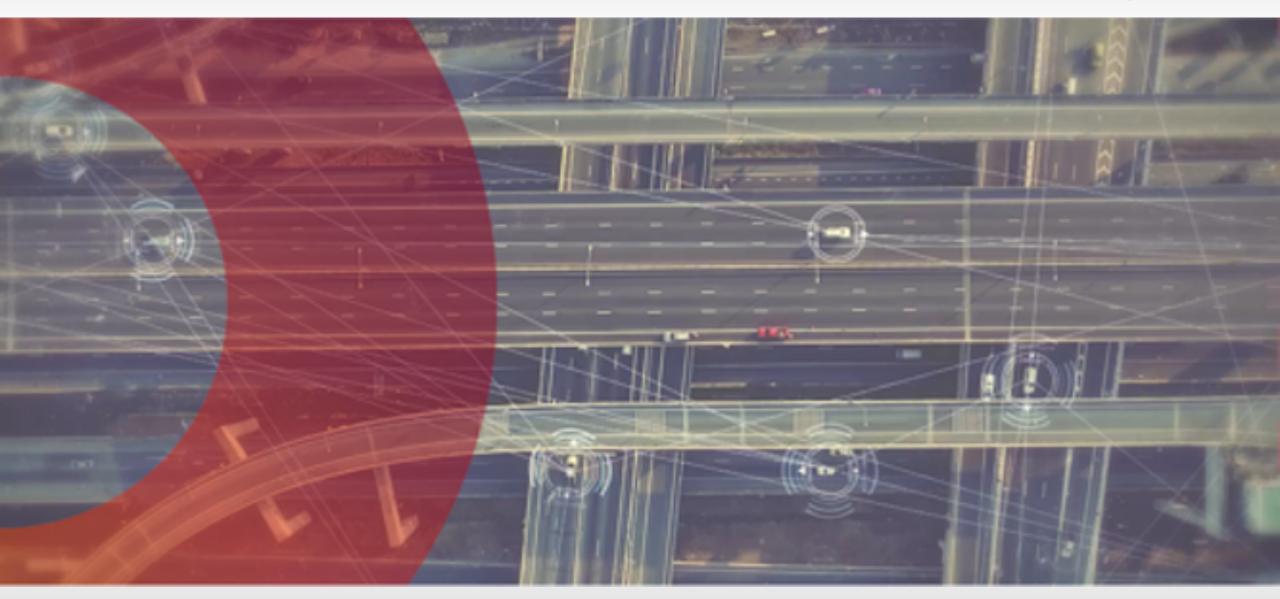


IOR(O_DIRECT, 256GB File), Lustre StripeCount=8, StripeSize=1MB

mpirun -np 1 ior -w -r -t \$t -b 256g -e -o \$DIR/file --posix.odirect

単一プロセス/DirectIO性能

JLUG 2021


- 2021年12月10日(金)
- オンライン開催
- 詳細/お申し込みは今すぐ! https://www.jlug.info/

