PCクラスタコンソーシアム HPCオープンソースソフトウェア普及部会ワークショップ 「高性能数値計算ライブラリLexADV」 2021年9月10日 (オンライン)

> 行列テンソル演算 ライブラリ LexADV AutoMTの概要と実装

> > 河合浩志(東洋大)

簡単な自己紹介など

河合 浩志

(現在) 東洋大学 総合情報学部 教授 (53歳)

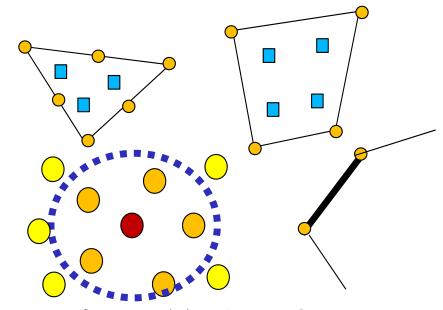
時期	プログラミング	計算機	仕事(+趣味)
1985	FORTRAN77	(大学の)大型計算機	大学の演習
1986	BASIC、マシン語	(自宅の)富士通FM-77	RPGなど
1987	TurboPascal	(大学の)教育用センター	RPGなど
1988	C, Smalltalk-V	PC-9801	バイト
1989	C++	PC-9801	バイト
1990	C, C++	(研究室の)Sun-4	プリポスト処理
1993	C、ベクトル化	Cray C90	ソルバー
1994	PVM	WSクラスタ	ソルバー
1998	Java	Windows PC	プリポスト処理

簡単な自己紹介など(続)

時期	プログラミング	計算機	仕事(十趣味)
		ADVEN	TUREプロジェクト関連
2000	C, C++	Linux PC	CAD、ツール類
2001	C, MPI	(研究室)PCクラスタ	ソルバー
2003	C、MPI、ベクトル化	地球シミュレータ	ソルバー
2004	C, SIMD	Linux PC	ソルバー
2008	C, MPI, OpenMP	(東大)T2K	ソルバー
2010	CUDA	NVIDIA GPU	ソルバー
2011	C, MPI, OpenMP, SIMD	京コンピュータ	ソルバー
2019	C, MPI, OpenMP, SIMD	富岳	ソルバー
2020	C、MPI、OpenMP、ベクトル化	NEC SX-Aurora TSU	JBASA ソルバー
2021	C, OpenACC	NVIDIA GPU	ソルバー

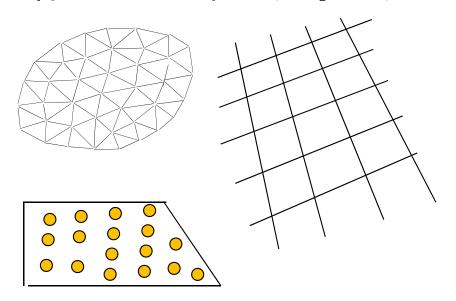
連続体力学シミュレーション 解析プログラム・コードの特性

要素・セル・粒子系: **物理モデル**



- 物理現象の詳細を記述
- テンソルまたは 小規模行列
- 点上(積分点、セル中心)で評価
 - → 点ごとに独立・並列で
 - → キャッシュ上で
- ・ 大量の数式
 - → コードの大部分を占める

全体システム系: *力学モデル*



- 近似手法(FEM、FVM、SPH...
- 行列・ベクトル式または差分式
- 隣接関係を記述
 - → 大規模な行列
 - → ステンシル演算
- 数式の数自体は少ない
 - → 線形代数ソルバー

数値計算のための抽象データ型

- ・ 基礎的な型
 - ベクトル、行列
 - 複素数
 - ─ 多倍長精度数 (4倍精度、double-doubleなど)
- ・ 連続体力学向け (要素、セルごとの計算で頻出)
 - 3次元ベクトル
 - テンソル(3次元)
 - 一定サイズ・小規模な行列 (6x6、9x9など)
- その他
 - 4元数 (クォータニオン)
 - 超双対数 (HDN: Hyper Dual Number)

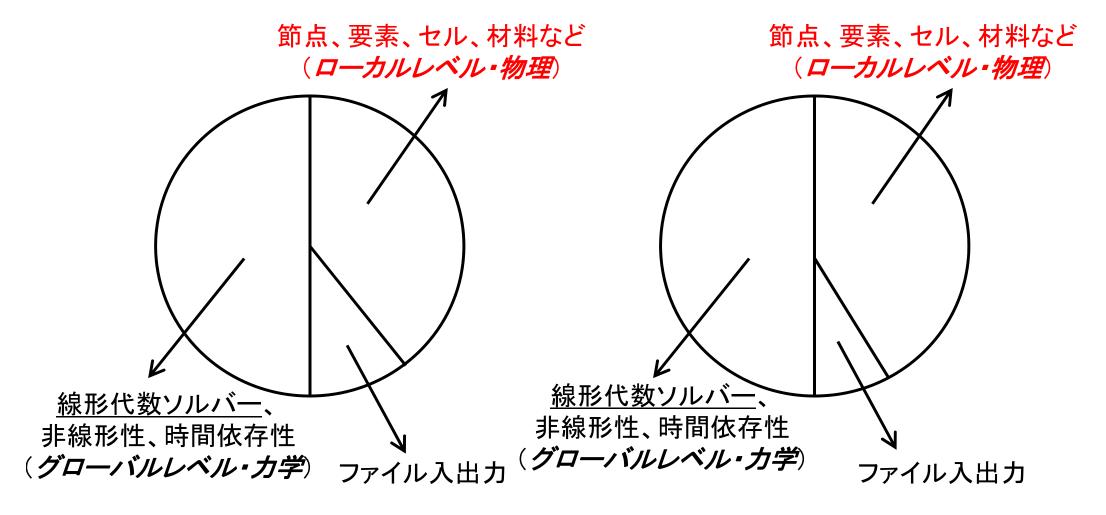
(比較的)小規模で 固定サイズのものが 多い

シミュレーションコードの特性

--実行時間--

小規模問題

大規模問題



<u>問題サイズにかかわらず、</u>要素・セル単位計算が一定の割合を占める (非線形、非定常問題の場合)

シミュレーションコードの特性

--規模・コード行数--

<小規模/自家製コード>

<大規模/汎用コード>

線形代数ソルバー、 節点、要素、セル、材料など 非線形性、時間依存性 (ローカルレベル・物理) (グローバルレベル・力学) ファイル入出力 線形代数ソルバー、 節点、要素、セル、材料など ファイル入出力 非線形性、時間依存性 (*ローカルレベル・物理*) (グローバルレベル・力学)

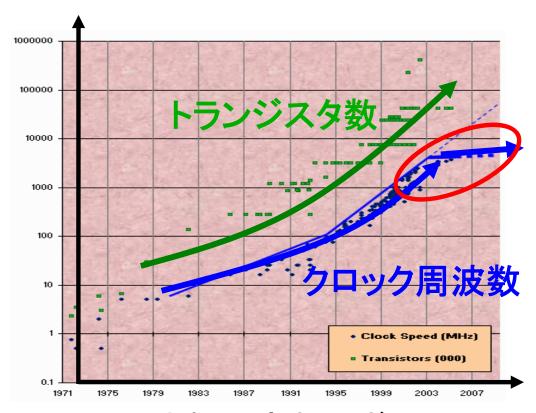
<u>コードが大きくなればなるほど、</u>要素・セル単位での処理が増える (より強い非線形性、より多くの材料や要素タイプ)

速いコードを書くには?

- 事実1: PCはすでにかなり早い (ただし、ピーク性能においてだが)
 - NVIDIA Tesla: 6 T FLOPS
 - Intel Xeon Phi: 3 T FLOPS
 - Intel Core i9 (Skylake-SP) : 2 T FLOPS (18 core)
- 事実2: でも、あなたのコードはせいぜい1~2G FLOPS程度かも (チューニングされていなければ)
 - クロック周波数自体はせいぜい2~3GHzなので

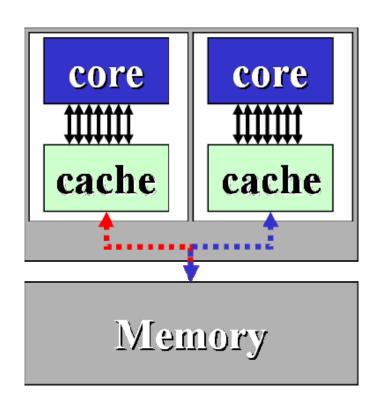
- 速いコードを書くには、(ピークに近い性能を出すには)
 - 関数・サブルーチンコールをしない
 - (短い)ループを使用しない
 - (小サイズの)配列を使用しない

いまどきのスカラーCPU



クロック周波数は変わらず (2~4GHzで停滞)

→ クロックあたり演算数の増加



コア数の増加、メモリバンド幅制約

→ キャッシュの重要性

(ピークで)TFLOPS級CPU/GPUの出現

→ 実際には(何もしなければ)~GFLOPS程度

クロックあたり、何個の演算を同時に実行できるのか?

ILP (Instruction-Level Parallelism) Wall 命令レベルの並列性に問題あり

プロセッサ アーキテクチャ世代	命令セット	スーパー スカラ	積和命令 (FMA)	SIMD 命令	total
K Computer(富士通)	HPC-ACE	2	2	2	8
Sandy Bridge	AVX	2	1	4	8
PRIMEHPC FX100 (富士通)	HPC-ACE Ver.2	2	2	4	16
Haswell	AVX2	2	2	4	16
Knights Landing	AVX512	2	2	8	32
Skylake-SP	AVX512	2	2	8	32
富岳•FX1000	ARM-SVE	2	2	8	32

SIMDベクトル化

```
double A[10000], B[3][10000]
                                     グローバル配列
                                       (SOA形式)
double D[10000];
                                 長めのループ
for (i = 0; i < 10000; i++)
   double a, b x, b y, b z, c, d; ローカル・スカラー変数
   a = A[i];
   b x = B[0][i]; b y = B[1][i]; b_z = B[2][i];
                          配列からスカラー変数へロード
   c = a * (b x + b y + b z);
   d = c + b x * b y * b z;
                                 計算部分
   d += a * (b x - b y - b z);
   D[i] = d;
                          スカラー変数を配列へストア
```

ハイパフォーマンス・デザインパターン

- アプリケーション分野ごとの抽象データ型を扱う
 - 抽象データ型: データ型と対応する演算手続き群
 - ・ ベクトル、行列、テンソル、複素数、4元数、4倍精度…
- Cプリプロセッサマクロによる実装
 - 結合演算子の利用 aa##bb → aabb
 - データ型をスカラー変数群で表現declare(a) → double a x, a y, a z;
 - 関連する演算手続きをCプリプロセッサマクロで表現
 add(a, b, c) → c x=a x+b x; c y=a y+b y; ...

例: 3-Dベクトル

変数宣言

```
#define declare_v3(a)\u00e4
double a##_x, a##_y, a##_z;
```

配列からのロード

```
#define load_v3(a, array)\{
    a##_x=array[0]; \{
    a##_y=array[1]; \{
    a##_z=array[2];
}
```

代入

```
#define assign_v3_v3(a, b)\{
    b##_x=a##_x; \{
    b##_y=a##_y; \{
    b##_z=a##_z;
}
```

加算

```
#define add_v3_v3_v3(a, b, c)\xi
    c##_x = a##_x + b##_x; \xi
    c##_y = a##_y + b##_y; \xi
    c##_z = a##_z + b##_z;
```

<オリジナルCソースコード>

double aa[3], cc[3];

```
declare_v3(a);
declare_v3(b);
declare_v3(c);

load_v3(a, aa);
assign_v3_v3(a, b);
add_v3_v3_v3(a, b, c);
store_v3(c, cc);
```

<Cプリプロセッサ出力>

```
double aa[3], cc[3];
double a_x, a_y, a_z;
double b_x, b_y, b_z;
double c_x, c_y, c_z;

a_x=aa[0]; a_y=aa[1]; a_z=aa[2];
b_x=a_x; b_y=b_y; c_z=c_z;
c_x = a_x + b_x;
c_y = a_y + b_y;
c_z = a_z + b_z;
cc[0]=c_x; cc[1]=c_y; cc[2]=c_z;
```

```
4倍精度の
for (jDof = 0; jDof < nColumns; jDof++) {
 int offset = iDof * nRows;
                              スカラー変数宣言
                                                        コード例
 AutoMT inline declare dd(b);
                                double b hi, b lo;
 AutoMT inline load dd d(b, vector hi[jDof], vector lo[jDof]);
                                                  bに配列変数の値をロード
            ベクトル化のためのコンパイラディレクティブ
#pragma ivdep
                (Intelコンパイラ向け)
#pragma simd
 for (iDof = 0; iDof < nRows; iDof++) {
                                      スカラー変数宣言
  AutoMT inline_declare_dd(M_ij);
                                       double M ij hi, M ij lo;
  AutoMT_inline_declare dd(c);
                                       double c hi, c lo;
  AutoMT inline declare dd(d);
                                       double d hi, d lo;
  AutoMT inline load dd d d
                                              M ijに配列変数の値をロード
   (M ij, cmps hi[offset + iDof], cmps lo[offset + iDof]);
  AutoMT inline load dd d d
                                              dに配列変数の値をロード
   (d, result hi OUT[iDof], result lo OUT[iDof]);
                                              mul:掛け算 c=M ij*b
  AutoMT_inline_mul_dd_dd(M_ij, b, c);
                                              add: 足し算 d=d+c
  AutoMT inline add dd dd dd(d, c, d);
  AutoMT inline store dd d d
                                              dを配列変数にストア
   (d, result hi OUT[iDof], result lo OUT[iDof]);
```

テンソル演算および 行列ベクトル演算のためのライブラリ $LexADV_AutoMT$ 「おてもと」

いまより楽にコードを書きたい

行列・テンソル演算を多用する プログラミング作業の効率化・省労力化

ま、できれば、コードが速いに越したことはない

現在および将来のプロセッサ上で 高速に動作するようなライブラリ実装・コード生成

例1:移動硬化則、相当応力

(非対称)テンソル形式

$$\sigma_e = \left\{ \frac{2}{3} (\mathbf{\sigma}' - \mathbf{x}') : (\mathbf{\sigma}' - \mathbf{x}') \right\}^{\frac{1}{2}}$$

```
real*8 t_sigma_prime(3,3), t_x_prime(3,3) real*8 sigma_e
```

```
real*8 s_tmp
real*8 t_tmp1(3,3)
```

```
call automt_sub_t_t (t_sigma_prime, t_x_prime, t_tmp1)
call automt_colon_t_t_s (t_tmp1, t_tmp1, s_tmp1)
sigma_e = sqrt (2.0d0 / 3.0d0 * s_tmp1)
```

例2: 弹塑性、J2則、等方硬化

$$\mathbf{C}^{ep} = 2GQ \frac{\mathbf{\sigma}^{tr'}}{\sigma_e^{tr}} \otimes \frac{\mathbf{\sigma}^{tr'}}{\sigma_e^{tr}} + 2GR\mathbf{I} + (K - \frac{2}{3}GR)\mathbf{I} \otimes \mathbf{I}$$

```
real*8 G, K, Q, R, sigma tr e
real*8 st sigma tr prime(6), st I(6)
real*8 mnst4 I(6,6), mnst4 II(6,6), mnst4 C ep(6,6)
call automt otimes st st mnst4
  (st sigma tr prime, st sigma tr prime, mnst4_tmp1)
call automt prod s mnst4 mnst4
  (2.0d0 * G * Q / sigma tr e, mnst4 tmp1, mnst4 tmp1)
call automt prod s mnst4 mnst4 (2.0d0 * G * R, mnst4 I, mnst4 tmp2)
call automt add mnst4 mnst4_mnst4 (mnst4_tmp1, mnst4_tmp2, mnst4_tmp1)
call automt prod s mnst4_mnst4
  (K - 2.0d0 / 3.0d0 * G * R, mnst4_II, mnst4_tmp2)
call automt add mnst4 mnst4 mnst4 (mnst4 tmp1, mnst4 tmp2, mnst4 C ep)
```

サポートされている演算

2階テンソル演算

<単項演算>

det **X** tr **X**

 X^T X^{-1} X^{-T}

<複雑な演算>

対称部・非対称部への分解

各種不変量

固有値、固有ベクトル

座標変換

Xⁿ (n:実数)

極分解

<二項演算>

 $X + Y \quad X - Y \quad S X$

XY X:Y $X\cdots Y$

Xa aX

X,Y:2階テンソル

a, b, c: ベクトル

s, t: スカラー

テンソル演算からコードへの マッピング

ベクトルテンソル積、ベクトル同士のドット積

```
a X⋅b →
                        AutoMT prod(), AutoMT cdot()
double a[3];
                   a
double X[3][3];
                   X
double b[3];
double s;
                   s = a X \cdot b
double tmp[3];
                                       入力:a,X
AutoMT prod t v v (a, X, tmp);
                                       出力:tmp
AutoMT cdot v v s (tmp, b, s);
                                       入力: tmp, b
                                       出力:s
```

マッピング例

演算からFortranサブルーチンコール(C関数)へのマッピング

X + Y

automt_add_t_t_t

Xa

automt prod t v v

XY

automt prod t t t

X: **Y**

automt_colon_t_t_s

X · · Y

automt_dotdot_t_t_s

det X

automt_det_t_s

X-1

automt_inv_t_t

有限要素法向けベンチマークテスト

	Intel (Sandy Bridge) インテルコンパイラ		東大Oakleaf-FX	
	オリジナル	チューニング	オリジナル	チューニング
構造解析•要素剛性	21%	60%	8%	35%
非線形材料構成則	16%	27%	6%	14%
熱伝導解析•要素剛性	24%	50%	12%	38%

Intel系 Cコンパイラ、-O3 -xAVX ショートベクトル化によるSIMD命令生成 (AVX)

FX10(および京) Cコンパイラ、-Kfast (+ディレクティブ) VSIMDによるSIMD化+ソフトウェアパイプライニング

まとめ

- テンソル演算と(小規模) 行列・ベクトル演算のための C/C++/Fortran向けライブラリを開発
- ハイパフォーマンス・デザインパターンの提案
 - スカラー機上でピーク性能比3~7割を達成

今後の課題

- GPU対応
- 連続体力学向けDSLの開発 (LaTeX形式からのコードジェネレータ)

コードが「速い」とは?

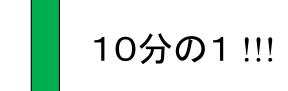
プログラムの 実行速度 (効率) アルゴリズムの = 効率

コードの **X** 効率

必要な 浮動小数点演算 (Floating Point Operation) 総数を減らす

単位時間あたり 浮動小数点演算 実行数を増やす (FLOPS)

→ 3倍!



速いコードを書くには?

- 事実1: PCはすでにかなり早い (ただし、ピーク性能においてだが)
 - NVIDIA Tesla: 6 T FLOPS
 - Intel Xeon Phi: 3 T FLOPS
 - Intel Core i9 (Skylake-SP) : 2 T FLOPS (18 core)
- 事実2: でも、あなたのコードはせいぜい1~2G FLOPS程度かも (チューニングされていなければ)
 - クロック周波数自体はせいぜい2~3GHzなので

- 速いコードを書くには、(ピークに近い性能を出すには)
 - 関数・サブルーチンコールをしない
 - (短い)ループを使用しない
 - (小サイズの)配列を使用しない

古き良き時代 (20年以上むかし...)

大型計算機(スパコン)

ミニコンピュータ

ステーション

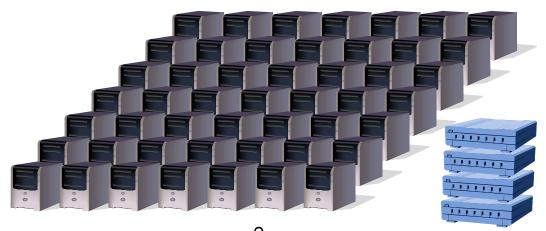
同じコードで

コードが速くなり、より大きな問題を

(ベクトル化。。。)

わりと最近まで

(2000-2010)



スパコン (箱、大杉!)

PCクラスタ (箱の束!)

PC・ワークステーション = 「箱」?

同じコードで コードが速くなり、 より大きな問題を (ただし、MPI並列)

今後、エクサ時代に向けて(2010-2020?)

ワークステーション

PCクラスタ

スパコン

