PCCCHPCA—TY—RY I Iz 7 EREBET—HavT
BERRISAA-TATSIVJRATR]I4A158 20224 x MmP

PGASHFNTAST SIS EFE XcalableMP®)
RS AR - 1K;

i =A

Team Leader, Programming Environment Research Team, RIKEN R-CCS
Professor (Cooperative Graduate School Program), University of Tsukuba

XcalableMPIZDU\T X==MP

= CNFET.PCCC XcableMPE &R IE A = TiEHrZiRmL . BB - TR K
THEZHED TS,
= Omni XcalableMP 3> /X455 https://omni-compiler.org/
= https://github.com/omni- compiler/omni—compiler
= XcalableMP 1.x {£#k(%. T—42 i 5|+ Coarrayz~A—RALT=H D
= MPIDruntimeZ{#ES50) T, MPIANEZ 395 AR5 IXEITAIRE

» EETCHARRE (775729720200 —EpEL THIF - 514f)
= XcalableMP 1.x {+#%
s Tofu-DZHAHL\AZEE

https://omni-compiler.org/
https://github.com/omni-compiler/omni-compiler

XcalableMP(XMP) nttp://www.xcalablemp.org S

e What's XcalableMP (XMP for short)?

e A PGAS programming model and language for
distributed memory , proposed by XMP Spec WG

e XMP Spec WG is a special interest group to design
and draft the specification of XcalableMP language. It
is now organized under PC Cluster Consortium,
Japan. Mainly active in Japan, but open for everybody.

e Project status (as of June 2019)

e XMP Spec Version 1.4 is available at XMP site.
new features: mixed OpenMP and OpenACC ,

libraries for collective communications.

o Reference implementation by U. Tsukuba and
Riken AICS: Version 1.3.1 (C and Fortran90) is
available for PC clusters, Cray XT and K
computer. Source-to- Source compiler to code
with the runtime on top of MPI and GasNet.

e HPCC class 2 Winner 2013. 2014

The spec of XcalableMP 1.x is now converged.

We are now moving to XcalableMP 2.0 with global

R-CCS

Language Features
= Directive-based language extensions for Fortran and C for

PGAS model

= Global view programming with global-view distributed data
structures for data parallelism

= SPMD execution model as MPI

pragmas for data distribution of global array.

Work mapping constructs to map works and iteration with
affinity to data explicitly.

Rich communication and sync directives such as “gmove” and
“shadow”.

Many concepts are inherited from HPF

= Co-array feature of CAF is adopted as a part of the language
spec for local view programming (also defined in C).

P task-based parallel programming and PGAS
&

RIK=H

int array[YMAX][XMAX]; Code example

#pragma xmp nodes p(4)

#pragma xmp template t(YMAX) data distribution
#pragma xmp distribute t(block) on p

#pragma xmp align array[i][*] to t(i) —

main(){ ‘ add to the serial code : incremental parallelization ‘
inti,j, res;
res =0;

#pragma xmp loop on t(i) reduction(+:res)
for(i = 0; i <10; i++)
for(j = 0; j < 10; j++){
array[i][j] = func(, j); work sharing and data synchronization
res += array[i][j];
}
}

@) | ||
R-CCS

Example of a Global-view XMP Program
e Collaboration in Scale project (with Tomita’s Climate Science Team)

e Typical Stencil Code

I$xmp nodes p(npx,npy,npz)

I$xmp template (1x,ly,lz) :: t

| declare a node array
I$xmp distribute (block,block,block) onto p :: t x\\

'$xmp align (ix,iy,iz) with t(ix,1iy,iz) :: declare and distribute

I $xmp& sr, se, sm, sp, sn, sl, ...
\ a template
I$xmp shadow (1,1,1) ::
I $xmp& sr, se, sm, sp, sn, sl, ... ‘\\\\\\
align arrays

add shadow area
l$xmp reflect (sr, sm, sp, se, sn, sl)

I¢xmp loop (ix,iy,iz) on t(ix,iy,iz)
do iz 1, 1z-1
do iy = 1, ly

do ix 1, 1x \

wue = sm(ix,iy,iz) / sr(ix,iy,iz)

stencil communication

wul = sm(ix,iy,iz+1) / sr(ix,iy,iz+1)
wvl = sn(ix,iy,iz) / sr(ix,iy,iz)

A4

parallelize loops

Local-view XMP program: Coarray Ko

e XMP includes the coarray feature imported from Fortran 2008 for the local-
view programming.
e Basic idea: data declared as coarray can be accessed by remote nodes.
e Coarray in XMP/Fortran is fully compatible with Fortran 2008.

b is declared as a coarray.

real b(8)[*] —

if (xmp_node num() == 1) then
a(:) = b(:)[2] ~—

Node 1 gets b from node 2.
e Coarrays can be used in XMP/C.

e The subarray notation is also available as an extension.

® Declaration float b[8]:[*];

® Put a[0:3]:[1] = b[3:3]; |+ putsbtonode 1.
® Get a[0:3] = b[3:3]:[2]; |+—— gets b from node 2.
® Synchronization void xmp_sync_all(int *status)

RIK=H

Preliminary Performance of XcalableMP on Fugaku 2

e XcalableMP was taken as a parallel programming language project for improving the
productivity and performance of parallel programing.

e XcalableMP is now available on Fugaku 3000
e Better result than MPI for stencil apps 7 2500
] -—-Fugaku =#~Oakbridge-CX
L 2000
512 S
S 1500
. 256 %
T e XMP € 1000
© 128 L
: o S oo /
S 64
E o T
S 32 1 4 16
o #procs
< 16
. Performance Himeno Benchmark
8 32 128 512 (12threads/node, 4 proc/node)
XMP nodes Comparing with Cascade Lake
Speedup of Impact-3D (global view, stencil apps) (2.7GHz, 28 core/socket, 2 sockets/node,
Fusion simulation code 28 threads/process)
Size = 51273

RIK=H

Performance of XcalableMP coarray on Fugaku ‘Recs

e The performance is enhanced by the Fugaku interconnect, Tofu-D, as well as node
performance.

e The runtime is implemented using uTofu Libs. (better than MPI)

o Note that the reason of the performance degradation of the XMP version on the K computer is the
overhead of allocation for allocatable coarray used as a buffer for communication. It is improved by
removing this overhead by using the uTofu.

QCD (Local view programming, Coarray) NT-Chem (local view programming, Coarray)
512 512
256 ~-XMP/K 26 | T XMP/K
MPI/K MPI/K
128 128
= XMP/Fugaku ~ XMP/Fugaku
- 64 MPI/Fugaku I
5 /Fug ~ 64 MPI/Fugaku
X 5
S X 3
X 16 [
s 2 5 ’
© 8 o
2 3
(%) 4 gg’_ 8
(V2]

2 4 _~

1 2

P # XMP nodes # XMP nodes
&

RIK=H

FLNSEILHLL 72 X ==MP

= Python&®mixed programming: DSLAJIZ{ES
= WHDH—RILZEERL . TENZPythonMSEUH T

= XMP API
» SRIBER-IV/IAST7ITO—FTEHRALHEOD T XMPEGHIKIEFIGTAT ST MNT
8. JATFVAPIZERT S LERELIZL
» XMPOERNGATOIOMTHD, /—FERE. TUTL—b BEECIFE. TARVTFITER
BL. T3 SdirectiveDIREEAPITRIRT 5,
» TARATRRERT . BELHEFE (JRIHICEHD?)

= PythonlZ&kAMiFTOT S35
= [Scripting XcalableMP = SXMP 3 ERAE W FNETEHAR V) THEFE SXMP DR LT |
IS, FEEH, ATHRE, FER(EL8E)
s [FHRLEFSE HPCHIZEE http://www.ipsj.or.jp/kenkyukai/event/hpc183.html
= XMP APITIXIEL AV XMPDruntimeZ F| A,

http://www.ipsj.or.jp/kenkyukai/event/hpc183.html

Mixed-language programming with Omni XMP compiler Rees

e N
Base language (C or Fortan) Base language +
+ XcalableMP directive 9> Backend)= Ccalling runtime =¥ Object file
function I

user code (a.c) [Runtime rary v

Execution binary

*) (a.out)

Add linkage API functions

(Omni Compiler

S Xmpcc a.c -0 a.out

e A user code with XMP directives is translated to a parallel code
with runtime calls of Omni compiler's runtime library

e The runtime library is implemented in C and MPI
e The translated parallel code is compiled by a native compiler
o e.g. GNU, Intel, PGI, Cray, and so on

e Linkage API functions are defined for mixed-language
programming

RIK=H

Serial Python program calls a parallel XMP program @ ||

R-CCS
Python program (a.py) XMP program (xmp.c)
import xmp
—svoid call_ xmp(long al[3],
lib = me.Lib(mep.SO") |Ong 32[3]){
args = ([1,2,3], [3,4,5]) #pragma xmp nodes p|[3]
job = lib.spawn(4, "call_xmp", args, async=True) | | :
// other work
job.wait() ® Python ® <: ®
@ XvP \ ®
@

o xmp.Lib.spawn() method creates new processes and they work as
an XMP program in parallel

S xmpcc -fPIC -shared xmp.c -0 xmp.so

S mpirun -np 1 python a.py

RIK=H

Example: Graph Order/degree solver in Python + XMP

o Implementation
o The existing python program generates an initial solution and saves a final solution

o XMP program searches an optimal solution (includes calculates diameter and ASPL)

e Optimization algorithm in XMP uses Simulated Annealing

Python

XMP/C

RIK=H

import xmp

lib = xmp.Lib("xmp.so")
args = (vertices, degrees, edge)
lib.callMPI.COMM_WORLD, "xmp_sa", args)

void xmp_sa(int vertices, , int degrees,
int edge[vertices*degrees/2][2]){

#pragma xmp loop on t[i]
for(int i=0;i<vertices;i++){
: // Calculate diameter and ASPL
}
#pragma xmp reduction(max:diameter)
#pragma xmp reduction(+:ASPL)

Python

Create initial solution

——| Initialize parameters

1

Output final solution

<

——P| Generate next state |

XMP/C

v

v

Compute energy

Transition

Cooling cycle ?

Cooling

v

= >

@ | ||
R-CCS

LD ETIE

s XMP API
s NN Z=a7I)L

=« C++TOF . wrapper template library® %5t - B F

s XcalableMP 2.0

= PGASEQD i FIHELRR D

157 Rl LT AT %k

» JORNZATERENHBD,

5% [Eslow-downL TLYA,

» IRE. EETOUCXOREGE | EXRREruntimeDEmZEL TLDHIRR

‘oo Tk

ESBC

(1]
\\

s XcalableACC

= XcalableMP + OpenACC. GPUDZEMYZRAMRITOIFITOY

= Omni Compiler
s C & Fortran®source-to-source A/ \NASDHRREA TS
= OpenMP 4.x Moffload#EEED E &

= OpenMP/OpenACCAHOpenCLH /1
= AMD, POCL, FGPA, RISC-VA®D 3t i

	スライド番号 1
	XcalableMPについて
	XcalableMP(XMP) http://www.xcalablemp.org
	Example of a Global-view XMP Program
	Local-view XMP program: Coarray
	Preliminary Performance of XcalableMP on Fugaku
	Performance of XcalableMP coarray on Fugaku
	新しい言語は難しい？
	Mixed-language programming with Omni XMP compiler
	Serial Python program calls a parallel XMP program
	Example: Graph Order/degree solver in Python + XMP
	これからの計画
	関連プロジェクト

