Hierarchical matrix(H-matrix) for CNN acceleration

- Hierarchical matrix is an efficient data-sparse representations of
certain densely populated matrices.
- CNN(Convolutional Neural Network)

e Background
- Hierarchical matrix(H-matrix) is a an
approximated form represent n X n correlations
of n objects, which usually requires an X n huge
dense matrix.

dense matrix Hierarchical matrix

- Significant savings in memory when compressed
0(n?) = 0(knlogn)
- Computational complexity
0(n3) = 0(k*nlogn?)
such as matrix-matrix multiplication,
LU factorization, Inversion...

The H-matrix approximation of dense matrix.
The red blocks are dense matrices. The green block
are low-rank matrices with rank k.



Preliminary Results — Compression rate of matrices

SDPARA Deep Learning (CNN)
Compression rate(%)
25.00
Size of matrix Size of matrix
20.23 8.00
20.00 4.000 3.567 6.946
7.00
15.80 3.500
3.000 6.00
15.00 2.396 4.717
= 2.500 = 500 4338
= 1.834 s
< 2.000 3 400
10.00 g g
& 1.500 & 3.00
1.000 0.841 500 1.610
5.00 0.500 I 1.00 I
0.000 0.00
0.00 5 f matei X n) Matrix A Matrix B Matrix A Matrix B
1632 2673 4150  oi9P MPEREE X Nhipazz 16758 22275 29056
B non-compressed M compressed B non-compressed M compressed
=®—=bemld  =®-=sdpara (m, n, k) = (1764, 1350, 178) (m, n, k) = (324, 298, 1908)

Compressive rate = (uncompressed size) / (compressed size) ~ — Matrix A successfully compressed! — Matrix B successfully compressed!
We can compress the matrix in some applications.
In CNN system application, Sgemm(Single precision
- bem1d: 1-Dimention Boundary element method floating General Matrix Multiplication) C = aAB + [C

- sdpara: A parallel implementation of the inter-point accounts for large part of calculation (around 70%).
method for Semi-Define Programming(SDP)



Power optimization using Deep Q-Network

- Background

Power optimization by frequency control in existing research

-~
Performance counter P=f (Xl, X5, )
Temperature .

Frequency,... Texe _ g(xr X ’)

N

Kento Teranishi

Frequency

» Detailed analysis is necessary
» Low versatility

- Objective
Implement the computer
control system using Deep Q-Network.

" Deep Q-Network (DQN)

Deep reinforcement learning
Calculate action value function Q from neural network
Used for game playing Al, robot car, AlphaGO.

\

~

/

‘ [ Use Deep Learning for analysis. 1

Counter
Power
Frequency

Temperature
etc.

Frequency
control



Using ML to Approximate Sciences - Fluid Dynamics
Example (slide courtesy of Bill Dally @ NVIDIA)

Navier-Stokes Equations

i

- pressure viscosity
» E
i ;
" "

surfacetension incompressibillity

Feature Vectors

Examples by Simulation

Training

“... Implementation led to a speed-up of one to three orders of magnitude
compared to the state-of-the-art position-based fluid solver and runs in
real-time for systems with up to 2 million particles”

“Data-driven Fluid Simulations using Regression Forests” http://people.inf.ethz.ch/ladickyl/fluid_sigasial5.pdf 9 <Anvioia

16/08/08 SWoPP2016 30



The current status of Al & Big Data in Japan

We need the triage of algorithms/infrastructure/data but we lack the
infrastructure dedicated to Al & Big Data (c.f. Google)

Machine| Learning
Algorithms

Use of Massive Scale Data now
Wasted

N/ <) Petabytes of Drive FAAIDS} AERT 227
ENSC Recording Video FANUC

\ TOYOTA @;Q—R-l Lﬂﬁ
AI&Data Procese' o Web access and

merchandice

[ | Ib
LLP/ IoT Communication,
Infrastructures Data

location & other data

FA&Robots

O

SoftBank NTT




The current status of Al & Big Data in Japan

We need the triage of algorithms/infrastructure/data but we lack the
infrastructure dedicated to Al & Big Data (c.f. Google)

Acceleration & Scaling of DL

Machine |Learning

& other ML Algorithms & SW

In

eferred

Networks Algorithms
b+( q FU]ITSU “Chainer” OSS DL Framework :

Many applications in manufacturing /1\ §

Application—based Solution providers
of ML (e.g. Pharma, Semiconductors)
Custom ML/DL Software

web, pharma, etc.

ITI_9\B

Analysis of automotive cameras
Performance analysis & improvement of DL

Al&Data Processiig

\

oo rusmprre. \ £
I =

QL

A BEIJA

vestigating the Application of DL
:DQNA MIZWHO

H G [F LR

Use of Massive Scale Data now

Wasted

D

T3 =) Petabytes of Drive FA &OKvhaOKTYY
ENSC Recording Video FANUC

Infrastruct
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Web access and YarQO! SofBank NTT
merchandice

™~

IoT Communication,

“Data

location & other data




The current status of Al & Big Data in Japan

We need the triage of algorithms/infrastructure/data but we lack the
infrastructure dedicated to Al & Big Data (c.f. Google)

FEFBEUVEDSEIL - G
EIR{LZ R e ferred & Investigating the Application of DL
Networks Algorithm
XCl B
“Chainer” OSS DL Framework T ERNeL
Many applications in manufacturing
Application—based Solution providers web, pharma, etc. LEl S
of ML (e.g. Pharma, Semiconductors)
Custom ML/DL Software ITIAB \
- : : ; Analy: E*&mxjﬂﬂu’%’%ﬁﬂﬁ assive Scale Data now
Massive Rise in Computing Dt BT EE(L ¢ of DL b
Requirements (CRI9 SREHAF Petab
ytes of Drive FA&OKhaOKV
DENSO Recording Video FANUC
amazon W'”"‘JWS”‘ZWG a8 FA&Robots
web services ' SAKURA Internet TSfOﬁTA @m
Insufficient to Counter the Giants s D €4 ®
(Google, Microsoft, Baidu etc.) Web access and banicll  SoiBak  NTT
merchandice

Al&Data
Infrastructures in Training

in their own game

Massive “Big”’ Data

IoT Communication,
location & other data

\Data




The “Chicken or Egg Problem” of
AI-HPC Infrastructures

e “On Premise” machines in clients => “Can’ t invest in big in Al
machines unless we forecast good ROI. We don’ t have the
experience in running on big machines.”

e Public Clouds other than the giants => “Can’ t invest big in Al
machines unless we forecast good ROI. We are cutthroat.”

e Large scale supercomputer centers => “Can’ t invest big in Al
machines unless we forecast good ROI. Can’ t sacrifice our existing
clients and our machines are full”

 Thus the giants dominate, Al technologies, big data, and people stay
behind the corporate firewalls:--



But Commercial Companies esp. the “Al
Giants” are Leading Al R&D, are they not?

* Yes, but that is because their shot—term goals could harvest the
low hanging fruits in DNN rejuvenated Al

e But AI/BD research is just beginning—— if we leave it to the
interests of commercial companies, we cannot tackle difficult
problems with no proven ROI

* Very unhealthy for research

o The Info[mation Research Topics ~ About  Our Subscribers Log In Q

Snap’s
Trending Stories | The Real
Got

e This is different from more mature =
fields, such as pharmace.UtlcaIS or Google Scaled Back Self-Driving Car
aerospace, where there Is balanced Ambitions
investments and innovations in both o s s
academia/government and the industry a ;oo

project. Instead, the self-driving car pioneer has settled on a more practical effort to

partner with automakers to make a vehicle that drives itself but has traditional features

for human drivers.

Meanwhile, Larry Page is planning to move its self-driving unit out of Google X, its



TSUBAME-KFC/DL: TSUBAME3 Prototype [ICPADS2014]

Oil Immersive Cooling+ Hot Water Cooling + High Density Packaging + Fine-
Grained Power Monitoring and Control, upgrade to /DL Oct. 2015

Cooling Tower:

Smgle Rack ngh DenS|ty Oil
Immersion
168 NVIDIA K80 GPUs + Xeon
413+TFlops (DFP)
1.5PFlops (SFP)
~60KW/rack

Water 25 35 C

Container Facility
20 feet container (16m?) —
Fully Unmanned Operation




ABCI Prototype: AIST Al Cloud (AAIC)
March 2017 (System Vendor: NEC)

* 400x NVIDIA Tesla P100s and Infiniband EDR accelerate various Al workloads
including ML (Machine Learning) and DL (Deep Learning).

» Advanced data analytics leveraged by 4PiB shared Big Data Storage and Apache
Spark w/ its ecosystem.

T
~ SINETS \\X |
- Internet Firewall :
. Connection D + FortiGate 3815D x2 '
B .. 10-100GbE + FortiAnalyzer 1000E x2 )

GDbE or 10GbE

Service and Manage&ent Network

Al Computation System SOOREEc LGNS e | arge Capacity Storage System

(COmputation Nodes (w/GPU) x50 30TB Memory

DDN SFA14K
+ Intel Xeon E5 v4 x2 56TB SSD » File server (w/10GbEx2,

» NVIDIA Tesla P100 (NVLink) x8

[T tive N dj IB EDRx4) x4

. nteractive Nodes . 8TB 7.2Krpm NL-SAS - -
Computation Nodes (w/o GPU) x68 X2 HDD x730 S ECUNE
+ Intel Xeon E5 v4 x2 Mgmt & Service * GRIDScaler (GPFS) RW100GB/s

. 256GiB Memory, 480GB SSD

[ Nodes x16 ]

_4

IB EDR (100Gbps)

Computation Network Bi-direction 200Gbps
Mellanox CS7520 Director Switch Full bi-section bandwidth
« EDR (100Gbps) x216 )

IB EDR (100Gbps)




2017 Q2 TSUBAME3.0 Leading Machine Towards Exa & Big Data

1.“Everybody’s Supercomputer” - High Performance (12~24 DP Petaflops, 125~325TB/s Mem,
55~185Tbit/s NW), innovative high cost/performance packaging & design, in mere 180m?Z...

2.“Extreme Green” — ~10GFlops/W power-efficient architecture, system-wide power control,

advanced cooling, future energy reservoir load leveling & energy recovery " l ’ ' * I I
A e e %

3.“Big Data Convergence” — Extreme high BW &capacity, deep memory TR

hierarchy, extreme 1/0 acceleration, Big Data SW Stack 2013 i O S

for machine learning, graph processing, ... TSUBAME2.5 H H “

. . upgrade ‘ il il

4.“Cloud SC” - eynamlc depleymeqt, con.talner-based 5 7PE DEP 016 TSUBAMES.0

node co-location & dynamic configuration, resource /17.1PF SFP ~20PF(DFP) 4~5PB/s Mem BW

20% power 10GFlops/W power efficiency
reduction ’ Big Data & Cloud Convergence

elasticity, assimilation of public clouds...

5.“Transparency” - full monitoring &
user visibility of machine
& job state,
accountability
via reproducibility

2010 TSUBAME2.0
2.4 Petaflops #4 World
“Greenest Production SC”

2006 TSUBAMEA.0 Simulation
80 Teraflops, #1 Asia #7 World 2013 TSUBAME-KFC Big Data Analytics

“Everybody’s Supercomputer” 2011 :EI\;I&Gordon Bell Prize #1 Green 500 Industrial Apps




Comparison of Machine Learning / Al Capabilities
of TSUBAME3+2. 5 and K—Computer

@ itsueizinssem

RIKSH RIKEN Advanced Institute for Computational Science

It | ERITEKE

Tokyo Institute of Technology

8l due to optimized

: GPUs) '
- Deep Learning
+TSUBAME3.0(2017 1
(2017) . FP32 11.4 Petaflops
Deep Learning / Al Capabilities BG/Q Sequoia (2011)

FP16+FP32 up to ~100 Petaflops 22 Petaflops SFP/DFP
+ up to 100PB online storage




AIST

METI AIST-AIRC ABCI @.
as the worlds first large—scale OPEN Al Infrastruc ture
« ABCI: Al Bridging Cloud Infrastructure

e Top—Level SC compute & data capability (1307200 Al-Petaflops)

e Open Public & Dedicated infrastructure for Al & Big Data Algorithms,
Software and Applications

e Platform to accelerate joint academic—industry R&D for Al in Japan
S N

. 130~200 Al-Petaflops |
< 3MW Power

< 1.1 Avg. PUE

Operational 2017Q3~Q4 )

f.

(:_ ’ ADVANCED INDUS THIAL SCERCE AN TEGHNOLODY At T)

o 5t K 7 Univ. Tokyo Kashiwa Campus

mionaL insTiTuTe oF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)

an



ABCI - 2017Q4~ 2018Q1

e Extreme computing power
- w/ 130~200 AI-PFlops for AI, ML, DL

— x1 million speedup over high-end PC: 1 Day training for
3000-Year DNN training job

- TSUBAME-KFC (1.4 AI-Pflops) x 90 users (T2 avg)

e Big Data and HPC converged modern design

- For advanced data analytics (Big Data) and scientific E
simulation (HPC), etc. -~ (

- Leverage Tokyo Tech's “TSUBAME3” design, but
differences/enhancements being AI/BD centric

e Ultra high bandwidth and low latency in memory,
network, and storage
— For accelerating various AI/BD workloads
— Data-centric architecture, optimizes data movement
e Big Data/AI and HPC SW Stack Convergence
— Incl. results from JST-CREST EBD

- Wide contributions from the PC Cluster
community desirable.

ationaL nstiure of ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)

41



Cloud Infrastructure

e Ultra-dense IDC design from ground-up  Referenceimage
— Custom inexpensive lightweight *“warehouse”
building w/ substantial earthquake tolerance
e Cloud ecosystem
- Wide-ranging Big Data and HPC standard
software stacks
e Extreme green
- Ambient warm liquid cooling, large Li-ion battery
storage, and high-efficiency power supplies, etc.
e Advanced cloud-based operation

- Incl. dynamic deployment, container-based
virtualized provisioning, multitenant partitioning,
and automatic failure recovery, etc.

— Joining HPC and Cloud Software stack for real

ationaL nstiure of ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)

42



@ National Institute for

National institute of

A Ry o Advanced Industrial
AIsT Science and Technolo
BITRGEA gy

BT ATZR (AIST
f'q R

Ministry of Economy, Trade and Industry

Ministry of Economics
Trade and Industry (METI)

AIST Artificial
Intelligence

Research
Center (AIRC)

Application Area
Natural Langauge
Processing
Robotics

Security

Matsuoka will be
appointed 15% to
AIST AI-OIL

starting summer

Joing Organization@QOdaiba

AIST-TokyoTech ’
Al/Big Data Open

)

Joint
Research on
Al / Big Data
and
applications

YAaHOO!

JAPAN

SRE FERHITITE o BTA H\ ]

BE/DODOXPM)
— ISR (EHRTIZHED
— BISMER (EHRHBHED

— DNASREE (ERTHAZED

— SINERHE

Innovation
Laboratory (OIL)

Industrial
Collaboration in data,
applications

Industry

= T 01(75 "/IL-'L'H—

GSIC

Resources and Acceleration of -
Al / Big Data, systems researelkgubame 3.0/2.5

Basic Research
in Big Data / Al
algorithms and
methodologies

TLAB prnvsoes

DENSO IT LABORATORY, INC.

Big Data /Al
resources

“Smart Al Technology
Research
Organization”

Other Big Data / Al

research organizations
and proposals



Software Ecosystem for HPC in Al

Different SW Ecosystem between HPC and Al/BD/Cloud
How to achieve convergence—for real, for rapid tech transfer

Existing Clouds

BD/AI User Applications

Application Layer

* Cloud Jobs often Interactive w/resource control REST APIs
» HPC Jobs are Batch-Oriented, resource control by MPI

Existing Supercomputers

HPC User Code

. n Graph Processing
Machine Learni
MLIib/ S Gr?phX/ SQL{NOI’I-_SQL SyStem SOftwa re Layer Numerical Libraries Various DSLs Workflow
Mahout/Chainer /ScGaII?GprI; h Hive/Pig « Cloud employs High Productivity Languages but LAPACK, FFTW Systems
P performance neglected, focus on data analytics and
. X dynamic frequent changes
[ PEVE R e ER A N T } « HPC employs High Performance Languages but requires Fortran - C- C++ + IDL
MapReduce Framework Ninja Programmers, low productivity. Kernels & compilers
Spark/Hadoop well tuned & result shared by many programs, less rewrite MPI - OpenMP/ACC - CUDA/OpenCL
* Cloud focused on databases and data manipulation workflow
RDB CloudDB/NoSQL « HPC focused on compute kernels, even for data processing. .
PostgresQL Hbase/Cassandra/MondoDB Jobs scales to thousands of jObS, thus debugging and Parallel Debuggers and Profilers
performance tuning
Distributed Filesysem Coordination Service « Cloud requires purpose-specific computing/data environment .
HDFS & Object Store “ ZooKeeper as well as their mutual isolation & security Pa[ﬂ;‘::_:"gif‘stem %?;r:):gbsslﬁ:‘:‘dﬂg':
VM(KVM), Container(Docker), Cloud Services » HPC requires environment for fast & lean use of resources, ! ! ! !
[ ! (omm’ l but on modern machines require considerable system
software support 0S Laver
Linux OS Y Linux 0S
Ethernet Hardware Layer T T X86 +
R Sytiches « Cloud HW based on Web Server “commaodity” x86 servers, HITLHECLAEAS High Performance Accelerators
High Local Node x86 CPU TOUL ! High Capacity s
. 9/L Storage distributed storage on nodes assuming REST API access Low Latency NW SAlELEERBUIRE e.g. GPUs,
atency/Low  HPC HW aggressively adopts new technologies such a s FPGAs

GPUs, focused on ultimate performance at higher cost,
shared storage to support legacy apps

Various convergence research efforts underway but no realistic converged SW
Stack yet => achieving HPC — AI/BD/Cloud convergence key ABCI goal



We are implementing the US AI&BD strategies already
...in Japan, at AIRC w/ABCI

e Strategy 5: Develop shared public datasets and

nvironments for Al training an ing. Th
environments for Al training and testing. The THE NATIONAL

depth, quality, and accuracy of training datasets ARTIFICIAL INTELLIGENCE
and resources significantly affect Al performance. RESEA%‘%‘%&?&%}]E&%PMENT

Researchers need to develop high quality
datasets and environments and enable

responsible access to high-quality datasets as well National Science and Technology Council
as to testing and training resources.

Networking and Information Technology
e Strategy 6: Measure and evaluate Al technologies Hescardand bevelopment subcommittee
through standards and benchmarks. Essential to
advancements in Al are standards, benchmarks,
testbeds, and community engagement that guide
and evaluate progress in Al. Additional research is

needed to develop a broad spectrum of

evaluative techniques.

October 2016




Co-Design of BD/ML/AI with HPC using BD/ML/AI
- for survival of HPC Acceleration and Scaling of
Accelerating BD/ML/AI via HPC and Large Scale Gra.phs

ﬁ/’Conventional HPC Apps Technologies and S
: Infras -

Big Data Al- Big Data and

Optimizing System| Oriented Automated Co- ML/AI Apps Image and Video
PC and BD/ML/AI i
ers Methodologies

Acceleration

Future Big Data-AI Scaling, and
Supercomputer Design ¥ Control of HPC via :‘-’3
i M. Lo BD/ML/Al and
L _|Ei| H ABCI: World’s first and future SC designs

largest open 100 Peta Al-
Flops Al Supercomputer,
Fall 2017, for co-design




What is worse: Moore’s Law will end in the 2020’s

* Much of underlying IT performance growth due to Moore’s law
 “LSI: x2 transistors in 1~1.5 years”
e Causing qualitative “leaps” in IT and societal innovations
* The main reason we have supercomputers and Google...

*But this is slowing down & ending, by mid 2020s...!!!
* End of Lithography shrinks
* End of Dennard scaling

The curse of constant

- transistor power shall ~ ©crdon Moore
e End of Fab Economics ; =
. u soon bg upon us .
*How do we sustain “performance growth’e ﬁ%yond the “end of

Moore”?

* Not just one-time speed bumps
 Will affect all aspects of IT, including BD/Al/ML/IoT, not just HPC
*End of IT as we know it



35 YEARS OF MICROPROCESSOR TREND DATA -~=="5777 ),
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20 year Eras towards of End of Moore’s Law

’
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Onginal data collected and plotted by M. Horowitz, F. Labante, O. Shacham, K. Olukotun, L. Hammond and C. Batten
Dotted line extrapolations by C. Moore

Need to realize the next 20-year era of supercomputing flat performance

20-year

Single Core
ILP-Vector
Killer-Micro Era

20 year
Post-Dennard
Many-Core Era

X 1980s~2004 A

Dennard scaling,
perf+ = single
thread+ = transistor
& freq+ = power+ /
2004~2015 feature )
scaling, perf+ =
transistor+ =
core#+, constant
power

20-year
Next-Gen
Post-Moore era

¢ 2015~2025 all -/
above gets harder
2025 post-Moore,
constant
feature&power =




The “curse of constant transistor power”
- lgnorance of this is like ignoring global warming -

e Systems people have been telling the algorithm people that
“FLOPS will be free, bandwidth is important, so devise
algorithms under that assumption”

e This will certainly be true until exascale in 2020...

e But when Moore’s Law ends in 2025-2030, constant transistor
power (esp. for logic) = FLOPS will no longer be free!

e So algorithms that simply increase arithmetic intensity will no
longer scale beyond that point

* Like countering global warming — need disruptive change in
computing —in HW-SW-Alg-Apps etc. for the next 20 year era




Performance growth via data-centric computing:
“From FLOPS to BYTES”

 |dentify the new parameter(s) for scaling over time

e Because data-related parameters (e.g. capacity and bandwidth) will still
likely continue to grow towards 2040s

e Can grow transistor# for compute, but CANNOT use them AT THE SAME
TIME(Dark Silicon) => multiple computing units specialized to type of data

e Continued capacity growth: 3D stacking (esp. direct silicon layering) and
low power NVM (e.g. ReRAM)

e Continued BW growth: Data movement energy will be capped constant by
dense 3D design and advanced optics from silicon photonics technologies

e Almost back to the old “vector” days(?), but no free lunch — latency still
problem, locality still important, need general algorithmic acceleration
thru data capacity and bandwidth, not FLOPS




Many Core Era

Post Moore Era

Flops-Centric Algorithms and Apps

Flops-Centric System Software

Homogeneous General Purpose Nodes
Localized Dat

Loosely Coupled with Electronic Interconnect

Transistor Lithography Scaling

(CMOS Logic Circuits, DRAM/SRAM)

Hardware/Software System APls [ ' ; y
Flops-Centric Massively Parallel Architecture

Bytes-Centric Algorithms and Apps

Bytes-Centric System Software

Hardware/Software System APIs
Data-Centric Heterogeneous Architecture

Heterogeneous CPUs + Holistic Data
Reconfigurable

Massive BW Dataflow Optical

3-D Package Computing
} Neuromorphic

Non-Volatile Quantum

Error-Prone
(oJoJele]
Ultra Tightly Coupled w/Aggressive

3-D+Photonic Switching Interconnected

Novel Devices + CMOS (Dark Silicon)

(Nanophotonics, Non-Volatile Devices etc.)




Multi-Phyics Massive Medical

Simulation Manufacturing Imagin Fusion/Plasma EMF Analysis Post-Moore
£iné Performamce
Auto Tuning Models
i ( Couplers -
POSt-MOOFG IS N OT d Post-Moore Computational P 1o |2l

Science Libraries BliGReducinglo,

More-Moore device
as a panacea

Post-Moore Data Science
and Al Libraries

N

Approximation
Data Assimilation — Qut-of-core Alg

High B/F Algorithms

Parallel Space-and-Time
— Algorithms

g
=

Machine Learning
based acceleration

Uncertainty
Quantification

Device & arch. advances
improving data-related
parameters over time

Post-Moore Programming Model

Data-oriented
Scheduling

Latency
Hiding

~N
Post-Moore High Bandwidth Hierarchical Memory

Hierarchical Data
Abstractions

Data-Movement
Runtime

Fault
Tolerance

“Rebooting Computing”
in terms of devices,
architectures, software.New memory Devices

Data & Custom Compute Centric Platform

Silicon Photonics WDM Interconnect
Photonic Switching

Photonic Interposes

—

High-Level
Synthesis

Compilers

Accelerator—
Specific
Compilers

o

Algorithms, and PC-RAM Photonic Compute Devices | LoW Precision &
. . ReRAM Optical Packet Switching PrObab“_s“C
applications necessary sTT-MRAM Computing

Low-Reliablility Communication

=> Co-Design even
more important
c.f. Exascale

3D architecture
Next gen VIAs & silicon
fabrication

Building Block “gluable” architecture
Inductive TCI
Tnugsten VIAs and 3D silicon

Memory Communication

Accelerator

“Binaries”

Brain-inspired Computing Post-Moore
Quantum Computing | performance
Neural Networks/ Parameters

Neromorphic/
Izing - Annealing

Low-Reliability computing
Near-tresiioid computing

Data Memoization

Customizable logic

Computation
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Post Moore Era Supercomputing Workshop @ SC16
e https://sites.google.com/site/2016pmes/

Jeff Vetter (ORNL), Satoshi Matsuoka (Tokyo Tech) et. al.

i Search this sit

ettt S8 2016 Post-Moore's Era Supercomputing (PMES) Workshop Home

'orkshop Home
News

Call For Position

Papers - Submission ) : . .

Deadline - June 17 Co-located with SC16 in Salt Lake City
Monday, 14 November 2016

News

PMES Submission Site Mow Openl

Invited Speakers PMES Workshop Confirmed for SC16!

Photos . "

Program Workshop URL - htto /i mp/pmes2016 Submissions open for PMES Position Papers
. April 17

Resources CFP URL: http /i mp/pmes2016¢fp SLERE=L

Workshop Venue Submission URL (EasyChair): hitp 4] mp/pmes2016submissions
Sitemap Submission questions: pmesi6@easychair org

Important Dates

= Submission Site Opens: 17 April
2016

o - — - a=T e Rl

challenges, and opportunities for supercomputing beyond the scaling limits of

1 8 8 This interdisciplinary workshop is organized to explore the scientific issues,



