) # -
P : “/ > /, & - P, |
- BEEXEHRABCI (; 1N

Z 7 A / '

=

¥ f;'sj — £ ¥
e LY V4 r
L p— 7
=, B
aF &

JST-CREST “Extreme Big Data” Project (2013-2018)
Future Non-Silo Ex1'r'eme Big

Data Scientific Apps

Ul‘rra Large Scale
Graphs and Social
Infrastructures

Massive Sensors and
Data Assimilation in

Weather Prediction ISSUGS regading

Co-Desitg @ '__ Architectural
supercomputer, R g
p p / : EBD SySTCm Software B a/gorithmicl ahd
how fast can we REL0 incl. EBD Object System

system software
evolution?

accelerate next . Graph Store
generation big

5 .
data c.f. Clouds: C'anvergenf Architecture (Phases 1~4) Use of GPUs?

Large C'apaafy NVM, High-Bisection NW

Cloud IDC W Supercomputers
Very low BW & Efficiency fy ey ComputedBatch-Oriented

Highly available, resilient ' More fragile

=

Extreme Big Data (EBD) Team..:& -

Co- De3|gn EHPC.and EDB Ap@s% e
ka (B, Toshio |

S UK utaka Aklyama Ken ﬁiurﬁfﬂ a('fokyo 5‘;".
1 :-?z?i) p;,l':‘ kyo|[Tech) TrCh) (EBD Appl Gengr@g.ﬁ,

e(Um\ﬁ* éuk ba) |""'TakemasaMlyoshl (leerﬁﬂ S) FHEL -
(EBD App?-'-éiﬁ-'i*'“"r d@taassugg)_ ~=-'.'

%

e (now merged into Maisiue}ka ‘[gme

- : -'a-.-"

=

l e [Michihlro K0|buch| (Nll) d .
(EB etwork)

EBD Recent Awards & Accolades

|IEEE Sidney Fernbach Award (2014, Matsuoka)
Rakuten Technology Award (2014, Matsuoka)

HPCWire 2015 Readers Choice Awards Outstanding Leadership in
HPC (2015/11)

e Satoshi Matsuoka, co-award with Prof. Jack Dongarra@U-Tennessee

World No.1 in Graph500 Benchmark on K computer(2016/11)
* 4 consecutive wins: 2015/06, 2015/11, 2016/06, 2016/11

e |PS) Computer Science Research Award for Young Scientists
(2016/10)

 Keita lwabuchi, “Towards a Distributed Large-Scale Dynamic Graph Data —e
Store”, IPSJ SIG Technical Report Vol. 2015-HPC-153, 2015/03 e —

« 2015 FIFHUBEFEREERZHAIE (2016/06) S—
o BB EHR [SYHRT—IILaAVE1—4-RyhT—SDBREZET 5%
BREI75 A3 |

=a—=X

=1 HDGraph500T3HAEEIHFRSE 1L

G .
o ..
[R

Open Source Release of EBD System
Software (install on T3/Amazon/ABCI)

 mrCUDA e ScaleGraph Python
e rCUDA extension enabling remote— * Python Extension for ScaleGraph
to—local GPU migration X10-based Distributed Graph Library
e https://github.com/EBD— e https://github.com/EBD—
CREST/mrCUDA CREST /scalegraphpython
« GPU 3.0 e Eclipse Public License v1.0
e Co—Funded by NVIDIA e GPUSort
« CBB e GPU-based Large—scale Sort
e I/0 Burst Buffer for Inter Cloud e https://github.com/EBD-
Environment CREST/gpusort
e https://github.com/EBD- e MIT License
CREST/cbb

e Apache License 2.0 e Others in development:---

e Co—funded by Amazon

The Graph500 — 2015~2016 — 4 Consecutive world #1
K Computer #1 Tokyo Tech[EBD CREST] Univ. Kyushu [Fujisawa
Graph CREST], Riken AICS, Fujitsu

88,000 nodes,
73% total exec 660,000 CPU Core

~ 1500 Communi--{— time wait in 1.3 Petabyte mem = €§ ¥
£ = Computati-} ommunication 20GB/s Tofu NW ., ¥....
5 1000 ﬁ
E
F 500 —
o
Q
a Lt
s o
w 64 nodes 65536 nodes p ”
(Scale 30) (Scale 40) N4 E;rpglé?(‘lance c.I.
*Problem size is LLNL-IBM Sequoia TjhyLight
PETNEEINE NS weak scaling 1.6 million CPUs 10/ million CPUS
November2013 4 5524.12 Top-downo “Brain-class” graph 1.6 Petabyte mem 3 3 petabyte mem
June 2014 1 17977.05 Efficient hybrid
November 2014 2 Efficient hybrid
June, Nov 2015 1 38621.4 Hybrid + Node

June Nov 2016 Compression

K-computer No.1 on Graph500: 4t Consecutive Time

e What is Graph500 Benchmark?

e Supercomputer benchmark for data intensive applications.
e Rank supercomputers by the performance of Breadth-First Search for very huge

graph data.

45000 ~=-K computer (Japan) This is achieved by a combination
gggggg Sequoia (U.S.A) —= of high machine performance and
= S TaihuLight (Chi e e pe
© 30000 unway Taihulight (China our software optimization.
£ 25000
g 50000 = // . Efficient Sparse Matrix Representation with
S 15000 Bitmap

10000 * Vertex Reordering for Bitmap Optimization

5000 . " * Optimizing Inter-Node Communications
0 :
Jun2012 Nov Jun2013 Nov Jun2014 Nov Jul2015 Nov Jun2016 Load Balancing
2012 2013 2014 2015 etc.

* Koji Ueno, Toyotaro Suzumura, Naoya Maruyama, Katsuki Fujisawa, and Satoshi Matsuoka, "Efficient Breadth-First Search on
Massively Parallel and Distributed Memory Machines", in proceedings of 2016 IEEE International Conference on Big Data (IEEE
BigData 2016), Washington D.C., Dec. 5-8, 2016 (to appear)

Towards a Distributed Large—Scale Dynamic Graph Data Store

Goal: to develop the data store for large—scale
dynamic graph analysis on supercomputers

Comp.
Node

Comp.
Node

Comp.
Node

Streaming edges

Dynamic Graph Application

Dynamic Graph Construction (on—-memory)

Node Level Dynamic Graph Data Store

Follows an adjacency-list format and leverages an
open address hashing to construct its tables
Mid-high degree table

vl | v4 w2 1 v3
w1l | w2 | Edge-list
Vertex table | vi|v3
w5 | w6

Low-degree table (degree: 1~2)
{v2,v4} | {v3,v4}

Vertex ID

w3 w4

\ Edge weight |
|

Extend for multi—-processes using an async
MPI communication framework

Against STINGER (single—node)

STINGER

e A state—of—the—art dynamic graph processing
framework developed at Georgia Tech

Baseline model

* A naive implementation using Boost library (C++) and
the MPI communication framework

H Baseline DegAwareRHH 212x
o
£ 200 ’
©
o
a 0 — — —
(7)) 6 12 24

Parallels

Multi-node Experiment

5 e—e Baseline
8 Ple e DegAwareRHH ‘ ? i
7 ‘ : *0 %
~ s s s]
g2 2***b||||on~"""r"""";
k.
S s ;~~~'~~';""insertlons/
c i i i
o 1.0f
@ 55l
gl
® i i i i i i |
t 0.0 i i i i i i i
8 0 20 40 60 80 100 120 140
S Number of Nodes (24 processes per node)

K. lwabuchi, S. Sallinen, R. Pearce, B. V. Essen, M. Gokhale, and S. Matsuoka, Towards a distributed large-scale dynamic graph data store. In 2016
IEEE Interna- tional Parallel and Distributed Processing Symposium Workshops (IPDPSW)

Large—scale Graph Colouring (vertex coloring) SC’16

e Color each vertices with the minimal #colours so that no two adjacent
vertices have the same colour
e Compare our dynamic graph colouring algorithm on against:
1. two static algorithms including GraphLab
2. an another graph store implementation with same dynamic algorithm (Dynamic—MAP)

1024
512
0
s 256 -
(9]
g \
oo 128
o
I__l. \
. 64
)]
~—
g 32
=
-
16
8 I 1 I 1 I 1
1 2 4 8 16 32 64

Nodes
ell==GraphLab este=Hash |=&==Dynamic-DARHH e=é=Dynamic-MAP

| I .
Static éolouring Our DegAwareRHH Baseline

Scott Sallinen, Keita Iwabuchi, Roger Pearce, Maya Gokhale, Matei Ripeanu, “Graph Coloring as a Challenge Problem for Dynamic
Graph Processing on Distributed Systems”, SC’ 16

Incremental Graph Community Detection

e Background

e Community detection for large-scale time-evolving and dynamic

graphs has been one of important research problems in graph

computing.

e |t is time-wasting to compute communities entire graphs every time

from scratch.
e Proposal

e An incremental community detection algorithm based on core
procedures in a state-of-the-art community detection algorithm

el

named DEMON.
* Ego Minus Ego, Label Propagation and Merge

t=

._-/ .‘/o‘ Update T““a/. A il Q?ﬁ ?\e

EgoMmusEgof Vi G) Addod vert . ® o
.) o

@ v A W e
-

EgoMtnusEgu(v G) 9\
EgoMinusEgo(v,, G ©—

Hiroki Kanezashi and Toyotaro Suzumura, An Incremental Local-First Community Detection
Method for Dynamic Graphs, Third International Workshop on High Performance Big Graph
Data Management, Analysis, and Mining (BigGraphs 2016), to appear

\ = e d N
L ® \ K — bme—o 9'
Tu- . q\/ Newly added vertex
original graph G Updated graph G e PN da u Update
; < ‘_’ o -Tables
2

Merge
ZIEE!M
C el |

AR E

T R R N

(TRl

5

[size | Overiaps
C 6

Congress Data
140

120
= 100
£
= 80 101.0x
8 s0
5 a0 faster
o
20
o —
=0.50 =0 =0.25 £=0.50 £=0.75
Original Incremen tal
mAdd 130.426 130.839 130.548 0.049 0.017 0.02
mBase 1.33 1.32 1.328 1.29 1.293 = 1.286
IMDb Data
600
500
=
g 400 101.5x
=
5 300 faster
3
2 200
v
100
o R I S
25 €=0.50 £=0.75 £=0.25 £=0.50 | £=0.75
Original Incremental
mAdd 479.48 502.298 494.659 0.938 0.03 0.031
mBase 4978 4913 5047 a9 4968 4.89
Amazon Data
4500
4000
— 3500
=
@ 3000 69.2x
i= 2500
=
T 2000 faster
b
& 1500
“ 1000
500
o S
€=0.25 =0.50 £=0 =0.25 €=0.50 €=0.75
Original Incremen tal

WAdd 3666.413900.43 3731.25 9.4371 0.1962 0.2047
M Base 35.499 37.276 36.871 44.057 36.367 42.175

GPU-based Distributed Sorting el oL
[Shamoto, IEEE BigData 2014, IEEE Trans. Big Data 2015]

e Sorting: Kernel algorithm for various EBD processing

e Fast sorting methods
— Distributed Sorting: Sorting for distributed system =

* Splitter-based parallel sort
* Radix sort
* Merge sort

— Sorting on heterogeneous architectures

e Many sorting algorithms are accelerated by many cores and high memory bandwidth.

e Sorting for large-scale heterogeneous systems remains unclear

e We develop and evaluate bandwidth and latency reducing GPU-based HykSort on
TSUBAME2.5 via latency hiding

— Now preparing to release the sorting library

GPU implementation of splitter-
based sorting (HykSort)

Weak scaling performance (Grand
Challenge on TSUBAME2.5)

— 1~1024 nodes (2 ~ 2048 GPUs)

— 2 processes per node

— Each node has 2GB 64bit integer
C.f. Yahoo/Hadoop Terasort:
0.02[TB/s]

— Including I/O

Performance prediction

(o]
o
1

(-b

Keys/second(billions)

K20x x4 faster than K20x

N
o
1

0

500 1000 1500 20000 500 1000 1500 2000
of proccesses (2 proccesses per node)

HykSort 1thread
4 HykSort 6threads
HykSort GPU + 6threads

w
o
1

(billions)

Keys/second

x389

0 500 1000

1500 2000

of proccesses (2 proccesses per node)

HykSort 6threads
HykSort GPU + 6threads o
PCle_10
+PCle_100
&4 PCle_200
PCle_50
Prediction of our implementation

x2.2 speedup compared to
CPU-based
implementation when the
of PCl bandwidth
increase to 50GB/s

PCle_#: #GB/s bandwidth
of interconnect between
CPU and GPU

8.8% reduction of overall
runtime when the
accelerators work 4 times
faster than K20x

Xtr2sort: Out—of-core Sorting Acceleration
using GPU and Flash NVM [ieee BigData2016]

How to combine deepening memory layers for future
HPC/Big Data workloads, targeting Post Moore Era?

e Sample—sort—based Out—of—core Sorting Approach for Deep Memory Hierarchy
Systems w/ GPU and Flash NVM

— 1/0 chunking to fit device memory capacity of GPU

— Pipeline—based Latency hiding to overlap data transfers between NVM, CPU, and GPU
using asynchronous data transfers,

e.g., cudaMemCpyAsync(), libaio 800.01- —
i |~ in-core-gpu
5 700.0f | —=— in-core-cpu(72)
Q L —v— out-of-core-gpu :
@ 600.0‘5% - ¢ - out-of-core-cpu(72)+psyncl]
'g —e— out-of-core-cpu(72)+libaio |
v} E - e - xtr2sort+psync ;
chunké+6 | RD | R2H | H2D | EX | D2H | H2w g 500'0§ —e— xtr2sort
chunk&5 | RD | KzH | HZD | EA |'DZH | HZW | WK % 400.0 77777 [
chunké+4 RD Kz | nzu [N UZH | nzw | WK X
chunk&3 | RD | KzH | HZD | EA |'DZH | HZW | WR = 300 Oﬁ ,,,,,
chunk& 2 | RD | Kzn | MzL | EX | 'DZH | HZW | WK .CC)-
chunké+l | RD | ke | Hzu | ea LZH | PZw | wk %2000, ,,,,,,,,,,
chunk& | RD | kzn | HZv | cA | LzH new | WK | 8 :
N— c :: !
¢chunks , 1 time F 1000
0.0- =
108

101-1- - ‘1‘612

Number of records [records]

CPU + NVM

Deep Learning Shock
NVIDA GTC2015 march 2015

) VUV I IVWiIY vy
b7 Baidu Deep Speech

Tunaluz3nio
oo

ELON MUSK | -

Se Uue

B //)

lllﬂfl'n
Elon Musk@TESLA Jeff Dean@Google Andrew Ng@Baidu

Deep Learning Shock
GTC2015 wmarch 2015

VUV ITIVWwiIy Ity

Baidu Deep Speech

HiA n'ﬂ

Elon Musk@ Jeff Dean@Go Andrew Ng@Bz

HPC important basis HPC important basis

Deep Learning Rules! Deep Learning Rules!
HPC important basis

{ Deep Learning Rules!

Deep Learning Shock
NVIDIA GTC2015 wmarch 2015

Comment from Anonymous TSUBAME user

/ We have thousands of GPUs \

and | can use them at will;
But | know nothing about DL
Despite being vendor talks
it seems to have wide-ranging apps,
making it mainstream HPC
So how are we going to even

survive? /

2011 ACM Gordon Bell Prize Winner & First Author

Just Putting in a few Deep
Learning Libraries on Custom-
Made Supercomputers will not

Infrastructural Proliferation:-:-

So how? Well we already know
how to make things go viral on
the Internet!

Background

Deep Learning (DL)

O A machine learning technique using “Deep” Neural Network
O DL is achieving state-of-the-art in large machine learning area
O Training DNN with huge dataset requires large scale computation
O eg. 15-layer CNN training takes 8.2 days on 16 nodes (48 GPUs) of TSUBAME2.5

O Researchers have to train DNN for several times to optimize DNN structure and hyper-
parameters by hand

Barn swallow = 0.95
Police dog =0.03
Water beetle =0.01

S dill

Imput(lmage) Output(Classes)

Reference: http://image-net.org/
(P 9 9/) Neural Network

18

esource Requirements for Deep Learning —H

[Source: Preferred Network Japan Inc.]

To complete the learning phase in one day _
Bio / Healthcare P:peta
. P 10 E:Exa
Image/Video - F:Flops
Recognition %
6/ & .
10P (Image) ~ 10E (Vldeo) Flops 100P ~ 1E Flops
FBF—4 : 1EROEHR 10000052558 —A@robjAmﬁt%umﬁmng
#F) — RT64 A [Google 2015] 10075 AT100PFlops. 1{&AT1EFlops
Image Recognition Auto Driving Robots / Drones
'III ii
10P~ Flops 1E~100E Flops 1E~100E Flops
175 AD50008M D DEBET—4 EEh&EiE 1 532010 1TB 18H-YERLITB
ATHICER SN 107BRID 106~10004, 100B9DEITT—IDFEE 1005&~1{EEHILELNT:
BB — 9% E(CFE [Baidu 2015] F—ATHET S

BHFE . RERFERXEET AN KREVEESHEITLD
REFADEAL LT —ENRREN, SRIIEBNEAHT T —IDHREL

EEHEEILIGBOEE TR L TIETEE T 5101
1TFlopshEFZELTEHE

10PF 100PF 1EF 10EF 100EF
2015 2020 2025 2030

Performance Modeling of a Large Scale Asynchronous Deep Learning System under Realistic SGD

Settings — Detailed Performance Modeling and Optimization of Scalable DNN

Yosuke Oyama?, Akihiro Nomura?, Ikuro Sato?, Hiroki Nishimura3, Yukimasa Tamatsu3, and Satoshi Matsuoka' DENSO
Tokyo Institute of Technology 2DENSO IT LABORATORY, INC. 3DENSO CORPORATION

[To Appear IEEE Big Data 2016]

Background Proposal and Evaluation =

e Deep Convolutional Neural Networks (DCNNs) have We propose a empirical performance model for an ASGD
achieved stage-of-the-art performance in various training system on GPU supercomputers, which predicts
machine learning tasks such as image recognition CNN computation time and time to sweep entire dataset

. Asynchronous Stochastic Gradient Descent (SGD) — Considering “effective mini-batch size”, time-averaged mini-
method has been proposed to accelerate DNN training batch size as a criterion for training quality

— It may cause unrealistic training settings and
degrade recognition accuracy on large scale
systems, due to large non-trivial mini-batch size

N
o

==48 GPUs |-

(%]

w w
o

=#-1GPU

15
10 Worse than 1 GPU training /

Better
Top-5 validation error [%]
N
o

o un

0 100 200 300 400 500 600
Validation Errdi°S} ILSVRC 2012

Classification Task on Two Platforms:
Trained 11 layer CNN with ASGD method

 Our model achieves 8% prediction error for these metrics
in average on a given platform, and steadily choose the
fastest configuration on two different supercomputers
which nearly meets a target effective mini-batch size

0.9
. §9 5e+02 sec
- O
z 0.8 Itni t’l E - 1e+03 sec
0.7 P " 5 .
é 0.6 LE s /,./'t*' 29° » 50103 sec
€ g5 v s _/ & '.1’ § S o | \ 1e+04 sec
204 —A/‘ /o %5 % | = 2es0asec
£ s ¥ i Ml #=ModelA [5 & /” The best configuration | = Se+0d sec
2] 7 £ ’ — € 8 . m 1e+05 sec
£, '7'¢ 4= —*—Models | E 8 . o achieve the shortest
802 A 4 —Z &8« //
e Vet 7 och tlme
01 4= ~-Model C |— ""1'%- | |
1 2 3 4 5 6 7 8 9 10 11 10 20 30 40
£ I . 5 A Number of nodes
Number of samples processed in one iteration Predicted Epoch Time of ILSVRC 2012 Classification Task:

Measured Time (Solid) and Predicted Time (Dashed)

. Shaded area indicate the effective mini-batch size
of CNN Computation of Three 15-17 Layer Models

isin 138+25%

Background

Mini-batch Size and Staleness

O Staleness
O # of updates done within one gradient computation

O Existing researches showed that the error is increased by larger mini-batch size and
staleness

O There was no way of knowing these statistics in advance

Staleness=0

Twice updatés
within gradient
computation

Staleness=2

21

Approach and Contribution

O Approach: Proposing a performance model for an ASGD deep learning system
SPRINT which considers probability distribution of mini-batch size and staleness

O Takes CNN structure and machine specifications as input
O Predicts time to sweep entire dataset (epoch time) and the distribution of the statistics

O Contribution

O Our model predicts epoch time, average mini-batch size and staleness with 5%, 9%, 19%
error in average respectively on several supercomputers

O Our model steadily choose the fastest machine configuration that nearly meets a target
mini-batch size

22

Predicting Statistics of Asynchronous SGD Parameters for a Large-Scale
Distributed Deep Learning System on GPU Supercomputers

Background

* In large-scale Asynchronous Stochastic Gradient Descent
(ASGD), mini-batch size and gradient staleness tend to be

large and unpredictable, which increase the error of trained

DNN

Mini-batch size

4 Objective function £

Twice asynchronous

updates within

gradient computation

E

i

DNN parameters space

Staleness=0

£+3)

Staleness=2

Proposal

We propose a empirical performance model for an ASGD
deep learning system SPRINT which considers probability
distribution of mini-batch size and staleness

Probability

Probability

0.10

0.00

0.10

0.00

Mini-batch size Staleness
4 nOdeS NSubbatch:1 g . NSubbatch:]-
< f Predicted
16 nodes z Measured

u T T T I I
100 200 300 400 500 600

T 1 T T T (i

0

2 4 6 8 10

Nsubbatch = 11

U.8

Predicted

0.4

Nsubbatch = 11

0.0

- [[[[
0 100 200 300 400%

NMinibatch

I
0

Measured

T T
2 4

Nstaleness

(Ngubbatch: # of samples per one GPU iteration)

* Yosuke Oyama, Akihiro Nomura, Ikuro Sato, Hiroki Nishimura, Yukimasa Tamatsu, and Satoshi Matsuoka, "Predicting Statistics of
Asynchronous SGD Parameters for a Large-Scale Distributed Deep Learning System on GPU Supercomputers", in proceedings of
2016 IEEE International Conference on Big Data (IEEE BigData 2016), Washington D.C., Dec. 5-8, 2016 (to appear)

SWoPP2016 16/08/08

Performance Prediction of Future HW for CNN

O UTD2mZRAWEEE CTRER/ (S A—F7%ZFH
O FP16: FEEFE/ NI ZRAVWCEE - 7 —5&FREFEEDmE
O EDR IB: 4xEDR InfiniBand (12.5GB/s)ZF\\/z ./ — REh&EMEEDE E

— Not only # of nodes, but also fast interconnect is important for scalability

TSUBAME-KFC/DLTC®DILSVRC20125—4AtY FOEZB(ICHITS
RBIRINSA—FDOFH (F=Z=)\y FH A X138+£25%)
|| N_Node | N_subbatch | Epochfl | FI==/{yFHAX
(REDHW) 8 8 1779 165.1

FP16 7 22 1462 170.1
EDR IB 12 11 1245 166.6
FP16 + EDR IB 8 15 1128 171.5

24

Algorithms and Tools for Vector Space Models of Big Data Computational Linguistics

i

| Distributed [
iImplementation . .
S

with MPI library ot

b ¢]
S e —
- -

ool

{ .
|| T -
i i ¥ 3 3§ % I

| next symbol

|| b T)
Stticient and , Co-occurrence matrix in
_ icient and compac C d Sparse Row
Corpus: large - OMPTessed sp
P . 9 intra-node data structures format stored to parallel storage
collection of texts based on ternary trees in hdfs

ﬁ The whole pipeline orchestrated from Python

Publications:

Proceedings of the NAACL-HLT SRW, San Diego, California, June 12-17, 2016, 2016, pp. 47-54.
Representations for NLP, Berlin, Germany, 2016, pp. 36—42.
on Data Science and Data Intensive Systems (DSDIS), 2015, pp. 61-68.

and Scientific Computing, New York, NY, USA, 2015, p. 1:1-1:10.

X=UsP

rrrrr

Integration with SLEPC high
performance distributed sparse
linear algebra library for
dimensionality reduction

Various machine
learning algorithms

@ http://lvsm.blackbird.pw

A. Drozd, A. Gladkova, and S. Matsuoka, “Word embeddings, analogies, and machine learning: beyond king - man + woman = queen,” accepted for COLING 2016.
A. Gladkova, A. Drozd, and S. Matsuoka, “Analogy-based detection of morphological and semantic relations with word embeddings: what works and what doesn't.,” in

A. Gladkova and A. Drozd, “Intrinsic evaluations of word embeddngs: what can we do better?,” in Proceedings of The 1st Workshop on Evaluating Vector Space
A. Drozd, A. Gladkova, and S. Matsuoka, “Discovering Aspectual Classes of Russian Verbs in Untagged Large Corpora”, Proceedings of 2015 IEEE International Conference

A. Drozd, A. Gladkova, and S. Matsuoka, “Python, Performance, and Natural Language Processing,” in Proceedings of the 5th Workshop on Python for High-Performance

GPU-Based Fast Signal Processing for

* Background

Snore sound (SnS) data carry very important information for diagnosis and
evaluation of Primary Snoring and Obstructive Sleep Apnea (OSA). With
the increasing number of collected SnS data from subjects, how to handle
such large amount of data is a big challenge. In this study, we utilize the
Graphics Processing Unit (GPU) to process a large amount of SnS data
collected from two hospitals in China and Germany to accelerate the
features extraction of biomedical signal.

* Acoustic features of SnS data

we extract 11 acoustic features from a large amount of SnS data, which can be
visualized to help doctors and specialists to diagnose, research, and remedy
the diseases efficiently.

Snore sound data information

Subjects | Total Time Data Size Data Sampling Rate
(hours) (GB) format

187.75 31.10 16 kHz, Mono
(Chlna +
Germany)

Large Amounts of Snore Sound Data

m— GPU = CPl es=Spoed Up

6000 47

nn

4000

4.4

3000 43

Speed Up

4z

2000

Running Time [Seconds)

41

T . aad !

0 3.0
1 2 4 8 16 32

Data Size (Mumber Of Subjscts)

Results of GPU and CPU based systems for processing SnS data

Result
We set 1 CPU (with Python2.7, numpy 1.10.4 and scipy 0.17 packages) for
processing 1 subject’s data as our baseline. Result show that the GPU based
system is almost 4.6 X faster than the CPU implementation. However, the
speed-up decreases when increasing the data size. We think that this result
should be caused by the fact that, the transmission of data is not hidden by other
computations, as will be a real-world application.

* Jian Guo, Kun Qian, Huijie Xu, Christoph Janott, Bjorn Schuller, Satoshi Matsuoka, “GPU-Based Fast Signal Processing for Large Amounts of Snore Sound Data” , In proceedings of 5th IEEE Global Conference on

Consumer Electronics (GCCE 2016), October 11-14, 2016.

