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Protein Crowding Simulations and
Comparison with NMR experiments



Why cellular environment is important ?

Inomata et al. Nature (2009)
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In-cell NMR suggests that conformational stability of ubiquitin in
cells is lower than in vitro.

Protein dynamics
IS different from in vitro.




Macromolecular Crowding: Theory vs Experiment

% NMR amide-exchange experiments of

% Hard sphere model (Minton,1993)
Cl2 (Pielak, 2011)

(Entropy-centered model)
+0.6

»<
L
L 4
The limitation 1
of
the model s 0

Lysozyme\ ¥ |Urea \ &

,f AG=/AH-TAS stabilization no-effect destabilization

Compact native like structures “ Crowding stabilizes or destabilizes

are stabilized proteins

Sk Let’s start crowding simulations using atomistic models with
explicit solvents !




Protein Crowding Systems for comparing with NMR
experiments

Feig, Sugita: J. Phys. Chem B (2012) 116, 599-605

CI2

18K atoms
6K H,0
infinite dilution

~160 ns MD

CI2 + 8 lysozymes
184K atoms

56K H,0/64 CI-
108 g lysozyme/L
7% vol fraction

~250 ns MD

Cl2 + 8 BSAs

835K atoms

253K H,0/136 Na*
104 g BSA/L solution
7% vol. fraction

~120 ns MD



Protein Stability in NMR vs Protein Fluctuation in MD

Lysozyme Urea

stabilization no-effect destabilization increased/decreased fluctuations in MD

A. Miklos, M. Sarkar, Y. Wang, G. Pielak: JACS (2011) 133, 7116-7120 Feig, Sugita: J. Phys. Chem B (2012) 116, 599-605



Interaction between CI2 and crowder proteins (BSA or
Lysozyme)

BSA lysozyme
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Feig, Sugita: J. Phys. Chem B (2012) 116, 599-605

Interaction between CI2 and lysozyme is stronger than that between CI2 and BSA.



CI2 interaction with crowder proteins

on average
1.1 CI2-BSA contacts 2.6 CI2-lysozyme contacts

Feig, Sugita: J. Phys. Chem B (2012) 116, 599-605



Cellular Environment slow down diffusion of proteins

700

Feig, Sugita: J. Phys. Chem B (2012) 116, 599-605
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Crowding Systems with different concentration of proteins

PGO: PGO
1 Protein G
Dilute

N PG2 PG3 PG4 PG1-4:
B 8 protein G
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Harada, Sugita, Feig, J. Am. Chem. Soc. 2012, 134, 4842-4849 NPT(1bar, 298K, 300ns)



Available volume for water within the first and second
solvation shell vs bulk

Harada, Sugita, Feig, J. Am. Chem. Soc. 2012, 134, 4842-4849

Protein 15t solvation 2"d solvation
volume shell shell
fraction (r<4A) (BA<r<7A)

% Almost no room for bulk water in highly crowded conditions
(PG4, PGVH4, PGVHS5).



Diffusion of Water and Protein Molecules in the Crowding
Systems

MSD(t) = (| r(t"+) - r(t) )
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% In crowded environment, diffusion of water and protein significantly slow down
Harada, Sugita, Feig, J. Am. Chem. Soc. 2012, 134, 4842-4849



Protein-Protein Interactions in Crowding Systems

% Contact maps between protein G and villin s Representative dimer structures
(average minimum distances) (protein G and villin)
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Harada, Tochio, Kigawa, Sugita, Feig, J. Am. Chem. Soc. 2013, 135, 3696-3701.



Conformational Stability of Villin and Protein-G in different
crowding systems

% Free energy landscapes of villin % Free energy landscapes of protein G
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Harada, Tochio, Kigawa, Sugita, Feig, J. Am. Chem. Soc. 2013, 135, 3696-3701.




Comparison of protein crowding systems
between MD and NMR

V10 and G34 changes their chemical shift due to crowding
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32mM villin (blue),
32mM villin with protein G (red)

By Dr. Kigawa and Dr. Tochio (RIKEN SSBC)

Harada, Tochio, Kigawa, Sugita, Feig, J. Am. Chem. Soc. 2013, 135, 3696-3701.
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New views on macromolecular crowding
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Harada, Tochio, Kigawa, Sugita, Feig, J. Am. Chem. Soc. 2013, 135, 3696-3701.



Development of Highly Parallelized
MD Software: GENESIS



K computer at RIKEN Advanced Institute for
Computational Science (AICS)

Performance of SuperComputer
(from Top500)
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K computer (The 4th fastest
computer)

Peak Performance: 10.51 PFLOPS

# of CPU Cores: 705,024

Total Memory:1.41PB (16GB per node)
Network: Tofu: 6D mesh / Torus

Recently, the performance of
supercomputers has been improved
significantly. Top machine in 2013 is
more than 100,000 times faster than
that in 1993.



GENESIS (Generalized-Ensemble Simulation Systems)

1. Aims at developing efficient and accurate methodologies for
free-energy calculations in biological systems

2. Efficient Parallelization - Suitable for massively parallel
computers, in particular, K computer

3. Applicability for large scale simulation

4. Algorithms coupled with different molecular models such as
coarse-grained, all-atom, and hybrid QM/MM

5. Generalized ensembles like Replica-Exchange Molecular
Dynamics (T-REMD, REUS, MREM, Surface-tension REMD (New!
T.Mori et al. JCTC in press.)

6. Open Source Code from this December



GENESIS (Generalized-Ensemble Simulation Systems)

GENESIS (V1) Development Team

* Project Leader: Yuji Sugita
* Major Developers: Jaewoon Jung, Takaharu Mori
* Developers: Chigusa Kobayashi, Yasuhiro Matsunaga, Takashi Imai,
Takao Yoda (Nagahama Bio Institute), Norio Takase (Isogo Soft)
e Other Contributors: Many members in Sugita Group

o

. 5A =
Y. Sugita J. Jung T. Mori C. Kobayashi Y. Matsunaga
New Features of GENESIS (V1)

* Inverse Lookup Table Scheme for Nonbonded Interaction
* J.Jungetal.J.Comp.Chem. 2013, 34, 2412-2420.

* Midpoint Cell Method for Hybrid Parallelization
* Fast 3D-FFT Calculations



All-atom MD Simulations of
Bacterial Cytoplasm on K computer



Our Target System for All-atom MD Simulation

100nm = 1/A10,000mm

Cytoplas

The first all-atom MD
simulation of bacteria
cytoplasm

— animal cell
10um
=1/100 mm "

100x100x100 (nm?3)
100,000,000 atoms
(including water)

thousands of proteins ! —
vast amounts of metabolites !

[ Mycoplasma
Genitalium
(bacteria)

- 300nm
=3/10,000mm

23




Mycoplasma genitalium: a bacterium with the smallest known
genome
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Karr, J.R., Sanghvi, J.C., Macklin, D.N., Gutschow, M.V., Jacobs, J.M.,
Bolival, B., et al. A Whole-Cell Computational Model Predicts
Phenotype from Genotype. Cell. 2012, 150, 389-401.



Brownian Dynamics Simulations by Elcock et al.

 PL0oS Computational Biology 2010
« 80X 80 X80 (nm?3)

* 6 micro sec.

» 50 selected proteins from E. coli

* No metabolites/solvents

» Effective potential.

 Diffusion coefficients are provided
as an input parameters.

* Focus on Thermodynamics
(Protein Stability)

« Advanced treatment of molecules
(full sampling and full scoring) is
required to predict protein stability
in crowded conditions.

Coarse-grained BD Simulations Without Hydrodynamic Effect




Brownian Dynamics Simulations by Ando and Skolnick

- PNAS 2010, 107: 18457-18462
. 100 X 100 X 100 (nm3).

« Avirtual cytoplasmic system of E.
coli

 QOver 1,000 macromolecules
consisting of 15 different
macromolecules in Brownian
Dynamics (BD) simulations (50
micro sec)

* Focus on the diffusion coefficient

* Hydrodynamic interactions greatly
reduce the diffusion coefficient
and create collective motions at
cellular concentrations.

BD simulations with hydrodynamic effect on Spherical Model
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