
SCore and PM Programming Manual

– DRAFT –

Atsushi HORI

November, 2006

Contents

1 Introduction 1
1.1 SCore Overview . 1
1.2 PMv2 . 2

1.2.1 PM Device . 2
1.2.2 PM Context . 2
1.2.3 PM Functions . 3
1.2.4 PM and SCore-D . 3
1.2.5 PM/Composite Device . 4
1.2.6 Network Heterogeneity . 5

1.3 Heterogeneity . 6
1.4 Program Invocation Procedure . 6

1.4.1 Programmed Resource Request . 6
1.4.2 Single-User Mode . 6
1.4.3 Multi-User Mode . 7
1.4.4 Local Execution Mode . 7

1.5 SCore Runtime Library Functions . 7
1.6 Parallel Process and Parallel Job . 8

1.6.1 Standard Input . 8
1.6.2 Parallel Process and Parallel Job . 8
1.6.3 Redirection of Standard Input and Output 9
1.6.4 Built-in scatter Program . 9

2 Quick Programming 11
2.1 Initialization . 11
2.2 Message Passing . 12

2.2.1 Naive Message Receiving . 12
2.2.2 Naive Message Sending . 13
2.2.3 MTU: Maximum Transfer Unit . 15
2.2.4 PM Macros . 15

2.3 Thread Safety . 15
2.3.1 Thread Safety in PMv2 . 15
2.3.2 Shared PM Context . 16
2.3.3 SCore-D Systemcall . 16

2.4 scatter Sample Program . 16
2.4.1 scatter: Pipeline Version . 16

i

2.4.2 Program Termination . 17
2.4.3 Compiling . 18
2.4.4 Debugging . 20

2.5 Summary . 23

3 Advanced Programming 24
3.1 Signals . 24
3.2 Checkpoint/Restart and Migration . 25
3.3 Blocking Receive . 26
3.4 Barrier Synchronization and Send Completion 28
3.5 Deadlock Detection . 28

3.5.1 Definition of Deadlock in SCore . 28
3.5.2 Deadlock Detection . 29
3.5.3 Real-Time Monitor . 30

3.6 Optional PM Operations . 31
3.6.1 Attributes of PM Context . 31
3.6.2 One-sided Communication . 32
3.6.3 Ordering Rule . 32
3.6.4 PM Address Handle . 33
3.6.5 One-sided Communication . 33
3.6.6 scatter: One-sided Version . 34

4 Other Functions 44
4.1 Resource Specification . 44
4.2 SCore-D API . 45

A Glossary 47

B Man Pages 49
smake(1) . 49
scorecc(1) . 49
scrun(1) . 51
sc barrier(2) . 56
sc checkpoint(2) . 57
sc exit(2) . 57
sc flush(2) . 58
sc getpid(2) . 58
sc inspectme(2) . 59
sc signal bcast(2) . 60
sc sleep(2) . 60
sc yield(2) . 61
pmAddNode(3) . 61
pmAfterSelect(3) . 62
pmAttachContext(3) . 62
pmBeforeSelect(3) . 63
pmErrorString(3) . 64

ii

pmExtractNode(3) . 64
pmGetContextConfig(3) . 65
pmGetFd(3) . 65
pmGetMessageQueueStatus(3) . 66
pmGetMtu(3) . 67
pmGetMulticastBuffer(3) . 67
pmGetSelf(3) . 68
pmGetSendBuffer(3) . 69
pmIsReadDone(3) . 69
pmIsSendDone(3) . 70
pmIsWriteDone(3) . 71
pmMLock(3) . 71
pmMUnlock(3) . 72
pmRead(3) . 73
pmReceive(3) . 74
pmReleaseReceiveBuffer(3) . 75
pmRemoveNode(3) . 75
pmSend(3) . 76
pmTruncateBuffer(3) . 76
pmWrite(3) . 77
sc create temporary file(3) . 78
sc open temporary file(3) . 78
sc set monitor(3) . 79
sc unlink temporary file(3) . 79
score become busy(3) . 80
score become idle(3) . 80
score get opt(3) . 81
score initialize(3) . 81
gather(6) . 82
scatter(6) . 83
system(6) . 84
score compiler list(8) . 84

iii

List of Figures

1.1 SCore Software Architecture . 1
1.2 Example of PM/Composite . 5
1.3 SCore pipe example . 9
1.4 SCore redirection example . 10
1.5 Communicating Processes in scatter command 10

2.1 score initialize() . 11
2.2 SCore Initialization . 11
2.3 pmReceive() and pmReleaseReceiveBuffer() 13
2.4 naive recv message() . 13
2.5 pmGetSendBuffer() and pmSend() . 13
2.6 naive send message() . 14
2.7 pmGetMtu() . 15
2.8 scatter header file . 16
2.9 spinwait receive() . 17
2.10 get send message() . 18
2.11 read file and pass next() . 19
2.12 pmTruncateBuffer() . 19
2.13 spinwait receive() and write file and pass next() 20
2.14 sc exit() . 20
2.15 scatter main() . 21
2.16 sc inspectme() . 22

3.1 score ckpt enter uncheckpointable() and score ckpt leave uncheckpointable() 25
3.2 sc checkpoint() . 26
3.3 pmGetFd(), pmBeforeSelect() and pmAfterSelect() 26
3.4 blocking receive() . 27
3.5 sc barrier() . 28
3.6 pmIsSendDone() . 28
3.7 pmGetMessageQueueStatus() and pmMessageQueueStatus structure 29
3.8 score become idle() and score become busy() 29
3.9 Example of Real-Time Monitor (CPU) . 30
3.10 sc set monitor() . 30
3.11 pmGetContextConfig() . 31
3.12 pmContextConfig structure . 31
3.13 get pm option bits() . 32

iv

3.14 pmMLock() and pmMUnlock() . 33
3.15 allocate locked buffer() . 34
3.16 send local handle() and passing handle() 35
3.17 pmWrite() and pmRead() . 35
3.18 pmIsWriteDone() and pmIsReadDone() . 36
3.19 is write done() and is read done() . 36
3.20 scatter main() with RDMA . 37
3.21 rdma write() . 38
3.22 Protocol Diagram of RDMA-Write . 38
3.23 rdma write head() . 39
3.24 rdma write tail() . 40
3.25 rdma read() . 41
3.26 Protocol Diagram of RDMA-Read . 41
3.27 rdma read head() . 42
3.28 rdma read tail() . 43

4.1 Resource Macros . 44
4.2 score get opt() . 45
4.3 sc flush() . 45
4.4 Temporary File Operation Functions . 45
4.5 sc signal bcast() . 46
4.6 sc sleep() . 46
4.7 sc yield() . 46

v

List of Tables

1.1 PMv2 Devices . 3
1.2 PM Functions . 4
1.3 SCore Functions for Runtime Library . 8
1.4 SCore-D Systemcall Functions . 8
1.5 Redirection of Standard Input and Output 9

2.1 Global variables defined in score.h . 12
2.2 PM Macros . 15
2.3 Compile Commands in SCore . 21
2.4 Value of the PM DEBUG environment variable 22

3.1 Signals in SCore . 24
3.2 Checkpoint Restrictions (Before SCore Version 6) 25
3.3 Checkpoint Restrictions . 25
3.4 scrun Real-Time Monitor Option Values . 31
3.5 Option Bits . 32
3.6 Optional Functions . 32

vi

Preface

SCore (pronounced as [es-core]) was designed to be an operating system for clusters for
high performance computation from the beginning. Thus SCore software philosophy and
architecture are unique and very different from the other cluster management software or
parallel programming environment for clusters.

This document was written for readers those who will develop runtime systems or
parallel programming (runtime) environments.

Here is the assumption of the readers of this document.

• Having enough knowledge of Linux, C programming language and parallel program-
ming

• Having the experience of using SCore cluster

• Trying to write a program or a runtime library to use PMv2 to get higher efficiency

Note

The sample programs in this documents are tested with SCore 6.0.1. The
earlier versions of SCore may not work properly.

vii

Chapter 1

Introduction

1.1 SCore Overview

SCore is a cluster operating system software package for high-performance clusters.
SCore was originally developed in a Real World Computing Project funded by Japanese
government, and now SCore is being developed and maintained by PC Cluster Consor-
tium (http:www.pccluster.org). SCore was designed and is being developed to be an
all-in-one package which supports almost everything needed for cluster computing. How-
ever, SCore does not provide cluster management functions which depends on hardware
too much.

Figure 1.1: SCore Software Architecture

Figure 1.1 shows the software architecture of SCore. The most popular parallel pro-
gramming environments, MPI and OpenMP are included in the SCore package. There are
two MPI implementations on SCore, MPICH-SCore based on MPICH (http://www.mcs.
anl.gov/mpi/mpich2), and YAMPI, http://www.il.is.s.u-tokyo.ac.jp/yampii/). OpenMP
is a parallel programming environment for shared memory machines. However, Omni

1

OpenMP compiler (http://phase.hpcc.jp/Omni/home.html) enables OpenMP programs
to run on distributed memory clusters.

SCore-D is a cluster operating system running on top of Linux operating system.
SCore-D manages various cluster resources and schedules parallel jobs. SCore jobs can be
submitted by the third-party batch job schedulers, such as PBS(Pro), NQS, LSF, SGE,
etc.

SCore-D also supports checkpoint/restart and migration. Further, SCore-D supports
network and processor heterogeneity. For example, cluster may have the mixture of
Myrinet and Ethernet, and/or the mixture of Intel/Pentium processors and AMD/Opteron
processors.

PMv2 is a low-level, high-performance communication library in SCore. It supports
various network devices, such as Myrinet and Ethernet.

Note on SCore� �
• SCore is a cluster system software package

• SCore is not a cluster management software package

• SCore supports MPI and OpenMP parallel programming environments

• SCore supports checkpoint/restart and migration

• SCore has its own job scheduling

• SCore can operate with the combination of third-party batch job schedulers

• SCore supports network and processor heterogeneities
� �

1.2 PMv2

PMv2 is the name of API for high-performance, low-level communication library. It sup-
ports multiple (physical layer) protocols as shown in Table 1.1. This allows users to have
only one binary executable file which can run on clusters having different network de-
vice. The PMv2 communication is neither peer-to-peer nor connection oriented. PMv2
communication preserves message order.

1.2.1 PM Device

There are various PM devices, Ethernet, Myrinet, Infiniband, and Shmem. PMv2 allows
to design a PM device to be implemented as a user-level communication or kernel-level
communication. Indeed, PM/Myrinet is implemented as a user-level communication, while
PM/Ethernet is a kernel-level communication.

1.2.2 PM Context

There are two kinds of PM objects, device and context. PM device can be thought as a
class object in an object-oriented language and PM context is an instance object derived

2

Table 1.1: PMv2 Devices

Device Name Physical Device Comment

shmem Shared Memory Intra-host communication

myrinet Myrinet(2K,XP,2XP)1)

ethernet (10,100,Gb,10G) Ethernet
ethernet-hxb (10,100,Gb,10G) Ethernet Experimental

ib-ts Top Spin2) (Mellanox3)) Infiniband Experimental
infiniband-fj Fujitsu Infiniband Experimental

sci SCI Experimental
agent-udp Ethernet (UDP/IP) Experimental

1) http://www.myri.com/
2) http://www.topspin.com/

3) http://www.mellanox.com/

from a class object. PM context can also be thought as an end-point in terms of network
communication and actual communication operations are implemented as methods of PM
context.

1.2.3 PM Functions

From the beginning, PMv2 was designed assuming the existence of SCore-D, a cluster
operating system. There are 61 functions defined in PMv2, however, almost half of them
are dedicated for the use of SCore-D (Table 1.2). PMv2 is designed not only for high-
performance, cluster in mind communication library, but also supporting system-level
checkpoint/restart, migration and gang-scheduling. The object of this document is to
explain how to use the PMv2 communication library to develop a runtime library or
a user program using PMv2 directly. The functions to implement checkpoint/restart,
migration and gang-scheduling are designed to be used by the SCore-D runtime library.
Thus describing the PM functions for SCore-D are thought to be out of the scope of this
document and these should be described in the PMv2 device development document.

Most PM functions return PM SUCCESS if they succeed and return ENOSYS if the function
is not available on the PM object (PM device or context).

1.2.4 PM and SCore-D

In modern operating systems, such as Unix and Linux, interaction of different processes are
very restricted and it should be done via various inter-process communication methods.
SCore-D and PM were co-designed so that a cluster operating system should have the
same integrity as modern operating system for sequential machines. Thus PM devices
are opened by SCore-D and PM contexts are created by SCore-D and passed to user
processes for the communication between the processes. Any PM contexts passed to a
user process are shared with SCore-D so that SCore-D can investigate the context and
save the communication status into memory or disk when the parallel job is checkpointed
or gang-scheduled.

3

Table 1.2: PM Functions

Function Name Privilege Function Name Privilege

Device pmGetTypeList() SCore-D pmCloseDevice() SCore-D
Ops. pmGetDeviceConfig() SCore-D pmGetNodeList() SCore-D

pmGetOptionBit() SCore-D pmIsReachable() SCore-D
pmOpenDevice() SCore-D

Context pmAddNode()† User pmAttachContext() User
Ops. pmBindChannel() SCore-D pmCloseAttachFd() SCore-D

pmCloseContext() SCore-D pmControlReceive() User
pmControlSend() SCore-D pmCreateAttachFd() SCore-D

pmDetachContext() User pmExtractNode()† User
pmGetContextConfig() User pmGetMtu()† User
pmOpenContext() SCore-D pmIsSendStable() SCore-D
pmRemoveNode()† User pmResetContext() User
pmRestoreContext() SCore-D pmSaveContext() SCore-D
pmUnbindChannel() SCore-D

Message pmAfterSelect() User pmAssociateNodes() User
Passing pmBeforeSelect() User pmGetFd() User

pmGetMessageQueueStatus() User pmGetSelf() User
pmGetSendBuffer() User pmReceive() User
pmReleaseReceiveBuffer() User pmTruncateBuffer() User
pmIsSendDone() User pmSend() User

Remote pmIsReadDone()‡ User pmIsWriteDone()‡ User

Memory pmMLock()‡ User pmMUnlock()‡ User

Access pmRead()‡ User pmWrite()‡ User

Checkpoint/ pmCheckpoint()‡ User pmGetMmapInfo()‡ User

Restart and pmMigrateSys()‡ SCore-D pmMigrateUser()‡ User
Migration pmRestartSys()‡ SCore-D pmRestartUser()‡ User

Debug pmDebug() User pmDumpContext() User

Misc. pmErrorString() User
†PM/Composite only

‡Optional Function

1.2.5 PM/Composite Device

There is another PM device not shown in Table 1.1, called PM/Composite which plays very
important role in SCore, however, in most cases it is invisible from users. PM/Composite
device is also called “pseudo device” since it has no physical network device and no commu-
nication ability. Instead, the context of PM/Composite has a routing table and can hold
several actual PM contexts (Figure 1.2). These PM contexts are switched according to the
destination node of message sending. PM/Composite allows a program to communicate in
a coherent way on SMP clusters where both inter-host and intra-host communication must
take place. On an SMP cluster, SCore-D allocates a PM/Composite context, PM/Shmem
contexts and other PM contexts. And the initializing function of SCore runtime library
receives the PM contexts from SCore-D and compose the PM/Composite context with
other PM contexts which can communicate withe other nodes.

4

Figure 1.2: Example of PM/Composite

1.2.6 Network Heterogeneity

It is the natural extension of the idea for PM/Composite to support multiple PM devices,
such as PM/Myrinet and PM/Ethernet. There could be a case where a faster PM network
covers part of a cluster and slow network covers all the cluster, because of small budget
which is not enough to buy faster but expensive network covering whole cluster, for exam-
ple. In SCore, the two networks can be utilized by using PM/Composite so that Myrinet
which is much faster than gigabit Ethernet is used as much as possible.

Figure 1.2 shows an example of how PM/Composite context is configured with having
multiple PM networks, PM/Shmem, PM/Myrinet, and PM/Ethernet. Here, cluster has
two physical networks, Myrinet and Ethernet, but only half of the cluster is covered by
Myrinet (right hand side of Figure 1.2. In the SCore initialization, the routing table of
PM/Composite context on the zeroth node is set up to utilize both networks as shown in
the left hand side of Figure 1.2.

Note on PMv2 Protocol� �
• Connection Less Protocol

• Preserving Message Order

• Supporting Zero-Copy Communication

• Supporting Multiple Protocols

• Supporting Checkpoint/Restart, Migration and Gang-Scheduling

• Supporting Network Heterogeneity
� �

5

1.3 Heterogeneity

SCore supports not only the heterogeneity of network, but also supports processor het-
erogeneity. PMv2 and SCore-D are designed so that an SCore cluster can consist of the
mixture of CPUs with different architectures. SCore can handle the differences of word
length (32 bits or 64 bits), endian (big or small), and OS (different distributions, different
versions).

If a runtime library or application which uses PM directly should be carefully im-
plemented with those processor heterogeneity, if the library or application supports the
heterogeneity, especially for word length and endian.

smake command which is a wrapper script (named .wrapper) of the Linux make com-
mand supports to produce different binaries for each different architecture and/or OS
(Man page:49).

1.4 Program Invocation Procedure

1.4.1 Programmed Resource Request

Some parallel programs have the constraint on the number of nodes required to run.
For example, in NAS parallel benchmark suite (http://www.nas.nasa.gov/Resources/
Software/npb.html), the number of nodes required to run the FT (Fourier Transform)
program must be the power of 2, and some others require square numbers. Those programs
are programmed to raise an error when the number of nodes allocated is not the right one.
However, there can be the case where a cluster is heavily loaded and submitted job must
wait hours before it starts execution, and a user may submit a job with a wrong number
of nodes. The execution terminates immediately when it starts execution because of the
wrong parameter, and the user wastes the waiting time.

1.4.2 Single-User Mode

1. A user tries to submit a job by invoking scrun program.

2. The scrun process fork()s and exec()s the user parallel program on its local host
to get programmed resource information.

3. The process of the user program calls score initialize() function and the func-
tion collects resource request information which might be programmed in the user
program.

4. The scrun process invokes SCore-D.

5. When SCore-D boots up, it connects with The scrun process and it sends resource
request to SCore-D. SCore-D checks the resource request, and allocates the resources
according to the request. If there is not enough resources, the job submission is failed.

6. SCore-D then fork()s and exec()s user processes on the allocated hosts. Here,
SCore-D creates PM contexts for the user parallel job and passes them to the job.

7. When all the above procedure succeeds, then SCore-D starts scheduling of the job.

6

8. When all of the user processes are terminated, then SCore-D terminates.

1.4.3 Multi-User Mode

1. SCore-D is already running and waiting for job submission.

2. A user tries to submit a job by invoking scrun program.

3. The scrun process fork()s and exec()s the user parallel program on its local host
to get programmed resource information.

4. The process of the user program calls score initialize() function and the func-
tion collects resource request information which might be programmed in the user
program.

5. The scrun process connects with SCore-D and passes resource request. SCore-
D checks the resource request, and allocates the resources according to the request.
If there is not enough resources, the job submission is failed.

6. SCore-D then fork()s and exec()s user processes on the allocated hosts. Here,
SCore-D creates PM contexts for the user parallel job and passes them to the job.

7. When all the above procedure succeeds, then SCore-D starts scheduling of the job.

8. When all of the user processes are terminated, then SCore-Dreclaims the resources
allocated to the job.

9. SCore-D is waiting for job submission.

1.4.4 Local Execution Mode

The executable binary file which is linked with SCore library can run on a host when it is
invoked solely without the scrun. In this case, most of the SCore-D systemcall functions
described in the next section do not work or simply ignored.

1.5 SCore Runtime Library Functions

The SCore-D cluster operating systems and user process has a shared memory region,
called C-Area where ’C’ stand for the communication between the user process and SCore-
D process. In this section, the SCore runtime library which is designed to be used for the
runtime-library over the SCore runtime library. The SCore runtime library is designed to
be used by the upper-level runtime libraries. The functions of SCoreruntime library are
listed in Table 1.3.

SCore-D is a cluster operating system. SCore-D not only schedules user parallel jobs,
but also it provides some services for user programs just like the systemcall functions in
Linux. The communication between SCore-D and user process is done via C-Area. The
SCore-D systemcall functions are designed to be used by the upper-level libraries and user
programs. The SCore-D systemcalls are listed in Table 1.4.

7

Table 1.3: SCore Functions for Runtime Library

Category Function Name Comment

Setup score initialize() Initialization

Idle Flag score become busy() Setting idle flag

Setting score become idle() Setting idle flag

Options score get opt() Getting scrun option

Table 1.4: SCore-D Systemcall Functions

Systemcall Name Comment

sc barrier() Barrier synchronization
sc checkpoint() Trigger checkpoint
sc exit() Terminating parallel process
sc flush() Flushing STDOUT and STDERR

sc getpid() Getting job ID of SCore-D
sc inspectme() Attaching debugger
sc set monitor() Real-time monitoring
sc signal bcast() Broadcasting signal
sc sleep() Sleeping
sc yield() Yielding (pausing)

sc create temporary file() Creating a temporary file
sc open temporary file() Opening a temporary file
sc unlink temporary file() Deleting a temporary file

1.6 Parallel Process and Parallel Job

1.6.1 Standard Input

The standard input of the scrun process is forwarded by SCore-D to the standard input
of the first node (rank 0 in MPI). The standard output of each Linux process is merged
and forwarded to the standard output of the scrun process. The standard error output is
handled in the same way as the standard output.

Some parallel programs may require to the input from STDIN on all processes. This
case can be handled by using the very unique feature of SCore described in the next
sections.

1.6.2 Parallel Process and Parallel Job

In SCore, parallel process is defined as a set of Linux processes which is derived from a
parallel program. And parallel job is defined as a set of parallel processes.

8

� �
$ scrun scatter == a.out < file.in

� �

Figure 1.3: SCore pipe example

1.6.3 Redirection of Standard Input and Output

Most of the shell programs in Linux (Unix) support “I/O redirection.” The same idea is
also implemented in SCore. Table 1.5 shows the I/O redirection features in Linux and
SCore. Almost the same functions are supported in SCore, however, the syntax is different
so that the Linux shell programs can distinguish them easily.

Table 1.5: Redirection of Standard Input and Output

Linux/Unix SCore Comment

a.out|b.out a.out == b.out a.out and b.out are piped
a.out<infile a.out := file.in 1 STDIN of a.out is file.in
a.out>outfile a.out =: file.out STDOUT of a.out is outfile
a.out>>outfile a.out =:: file.out STDOUT of a.out is appended to file.out

a.out:b.out a.out :: b.out Sequential invocation of a.out and b.out.

parallel job in defined in SCore is piped and/or serialized parallel processes and the
parallel job is the unit of SCore-D scheduling. All parallel processes in a parallel job
are running on the same node allocated by SCore-D. When two parallel processes are
connected by an SCorepipe, then the processes running on the same node are connected
with the Linux pipe.

1.6.4 Built-in scatter Program

As described in the beginning of this subsection, SCore supports STDIN forwarded to the
STDIN of the first node of a parallel process. However, combination of the parallel job
described in the previous subsection and the scatter program (Man page:83) which is
built in the SCore package, the STDIN can be forwarded to the STDIN of all processes in a
parallel process. The example of the scrun command invocation of a piped parallel job is
shown in Figure 1.3.

The STDIN of scrun, which is redirected to the file named file.in located on the host
where the scrun is invoked, is forwarded to the STDIN of the first node of scatter parallel
process, and the scatter program broadcasts its STDIN to the STDOUT of all the processes
of the parallel process. The STDOUT of the scatter program on each node is connected
with the Linux pipe with the STDIN of the a.out on the same node. Thus the file.in

file becomes the STDIN of every process of the a.out parallel process.
In this example shown in Figure 1.4, each STDOUT of the scatter parallel process

is redirected to the file.out file which is located on the every host where the parallel
process runs. The effect of this example is very similar to the Linux rdist program.

9

� �
$ scrun scatter =: file.out < file.in

� �

Figure 1.4: SCore redirection example

Figure 1.5: Communicating Processes in scatter command

The Linux processes in this example and data flow between them are shown in Figure
1.5. The file content is copied in a pipe-lined way. The scrun program forwards its STDIN
via a TCP/IP connection to the first node running on a compute host. The first node
reads the file content from its STDIN, writes to a local file and then it passes the content
to the next node via PM communication. The next node writes to a local file and then
forwards the content to the next node. This forwarding is repeated in parallel until it gets
to the final node.

From the next section, this scatter is focused as examples of SCore and PMv2 pro-
gramming. This program is simple and considered to be a good working example of
SCore and PMv2 programming. The actual scatter program is a little bit more compli-
cated though.

10

Chapter 2

Quick Programming

2.1 Initialization

#include <score.h>
void score_initialize(void)

Figure 2.1: score initialize()

Every SCore program must call score initialize() function at the very beginning
of the program. score initialize() has two different rolls depending of the context how
the program is invoked.

• When the user program is invoked by the scrun command and runs local (user)
host, then the SCore runtime library collects programmed resource request and pass
the resource information to the scrun process. Then the user program terminates
in the SCore library.

• When the user program is invoked by SCore-D on compute hosts, then it get PM
contexts allocated by SCore-D.

The obtained resource information is passed to SCore-D when the scrun tries to submit
the job. SCore-D then check the resource request, if there are enough resources then the
job is accepted. User program, however, need not to distinguish those two cases, because
score initialize() function never returns in the case of local execution to get resource
information.

#include <score.h>

int main(int argc, char **argv) {
score_initialize();
....

}

Figure 2.2: SCore Initialization

11

After returning from the score initialize() function, although this means the pro-
gram is executed on compute hosts, some global variables are set (Table 2.1). Allocated
PM contexts are set to an array variable named score pmnet, and are ready to commu-
nicate with any other nodes and no need of extra initialization.

Each element of the score pmnet array variable always points to a PM/Composite
contexts and the PM/Composite contexts hold actual PM contexts. The PM/Composite
contexts are set inside the score initialize() function so that the process can commu-
nicate via the PM/Composite context with every allocated hosts and created processes by
SCore-D. However, trying to communicate with a node which is not allocated by SCore-
D will result in an error.

A PM/Composite context and the PM contexts held by the PM/Composite context
are called network set. A program may have several network sets. For example, a program
can have two network sets, one of them is used for barrier synchronization and another is
used for massive data transfer.

Table 2.1: Global variables defined in score.h

Variable Name Comment

int score self node node number of self process
int score self proc process number on host
int score self host host number
int score num node number of nodes allocated
int score num proc number of processes on host
int score num host number of host allocated
int score num pmnet number of PM network sets allocated
pmContext *score pmnet[] PM contexts

The score num pmnet is set to zero and score pmnet[0] is set to NULL when only one
node (one process) is allocated by SCore-D. Since there is no way to communicate with
only on node and no PM context is allocated.

2.2 Message Passing

2.2.1 Naive Message Receiving

There are two functions to receive a PM message, pmReceive() and pmReleaseReceiveBuffer().
The pmReceive() function tries to receive a message. If there is one or more received mes-
sages in the receive buffer, the function returns PM SUCCESS. Unless it returns ENOBUFS or
EBUSY (see also Section 2.3.1). The returned buffer address is word-aligned and able to cast
in any type. The received message must be released by calling the pmReleaseReceiveBuffer()
function. The pmReceive() and pmReleaseReceiveBuffer() functions may return some
other error numbers. Unfortunately those are up to PM devices and not well-defined.

In Figure 2.4, a very simple and naive function naive recv message is defined to
receive a PM message. As in the previous example, the function shown here is to give
readers an intuitive realization, and no good for real use in the sense of healthiness and
efficiency. A proper communication code will be shown later in this chapter.

12

#include <score.h>
int pmReceive(pmContext *pmc, caddr_t *bufp, size_t *lenp);
int pmReleaseReceiveBuffer(pmContext *pmc);

Figure 2.3: pmReceive() and pmReleaseReceiveBuffer()

#include <string.h>
#include <errno.h>
#include <score.h>

int naive_recv_message(int dest, void *message, size_t *len) {
caddr_t sbuf;
int cc;

while(1) {
cc = pmReceive(score_pmnet[0], &sbuf, &len);
if(cc == ENOBUFS || cc == EBUSY) {
continue;

} else if(cc == PM_SUCCESS) {
memcpy(message, sbuf, len);
cc = pmReleaseReceiveBuffer(score_pmnet[0]);

}
break;

}
return(cc);

}

Figure 2.4: naive recv message()

All the information in the received message must be extracted or copied by the time of
calling the pmReleaseReceiveBuffer() function. The buffer region for the received mes-
sage is reclaimed and recycled when the pmReleaseReceiveBuffer() function is called.

2.2.2 Naive Message Sending

Similar to the PM message sending in the previous subsection, There are two functions
to send a PM message via a PM context, pmGetSendBuffer() and pmSend(). The
pmGetSendBuffer() function is called to get a memory space to send a message. The
message buffer space is word-aligned and able to cast in any type. The pmSend() function
is to send the message which was obtained via calling the pmGetSendBuffer() function. As
in the PM message sending, calling of the pmGetSendBuffer() and pmGetSendBuffer()

functions must be paired at any time. Any PM device does not allow to send a mes-
sage to the node itself. No zero length message is allowed to send. In both cases,
pmGetSendBuffer() function returns EINVAL. The pmGetSendBuffer() and pmGetSendBuffer()

functions may return some other error numbers. Unfortunately those are up to PM devices
and not well-defined.

#include <score.h>
int pmGetSendBuffer(pmContext *pmc, int node, caddr_t bufp*, size_t len)
int pmSend(pmContext *pmc)

Figure 2.5: pmGetSendBuffer() and pmSend()

13

In Figure 2.6, a very simple function naive send message is defined to send a PM
message. The function shown here is to give readers an intuitive realization, and no good
for real use in the sense of healthiness and efficiency. A proper communication code will
be shown later in this chapter.

#include <string.h>
#include <errno.h>
#include <score.h>

int naive_send_message(int dest, void *message, size_t len) {
caddr_t sbuf;
int cc;

while(1) {
cc = pmGetSendBuffer(score_pmnet[0], dest, &sbuf, len);
if(cc == ENOBUFS || cc == ENOBUFS) {
// processing received message must take place here !!
continue;

} else if(cc == PM_SUCCESS) {
memcpy(sbuf, message, len);
cc = pmSend(score_pmnet[0]);

}
break;

}
return(cc);

}

Figure 2.6: naive send message()

The pmGetSendBuffer() function returns ENOBUFS or EBUSY when there is no room
available for the sending message, and returns PM SUCCESS when it succeeds (see also
Section 2.3.1). The message sending in PMv2 is asynchronous. The successful return
of the pmSend() function does NOT mean the sent message is already received by the
PM context of the receiver process, but it means that the message sending is queued
successfully in the PM context and the message may be sent in the future. The message
must be constructed between calling the pmGetSendBuffer() and pmSend() functions.
The modification of sending message after calling the pmSend() may not be reflected to
the actual sent message. There is no way to cancel the queued sending message.

When the pmGetSendBuffer() returns ENOBUFS or EBUSY, in general, message receiv-
ing routine must be called to avoid a deadlock. For example, think about a peer-to-peer
communication for simplicity. Each node tries to exchange massive data which is much
more than the size of MTU. When a program just repeats sending messages to send
the massive data, and not trying to receive any message, soon the receive buffer of a
PM context becomes full because both end never tries to extract messages in the receive
buffer. And then the send buffer is also fulfilled with outstanding messages. Eventu-
ally the pmGetSendBuffer() keeps returning ENOBUFS or EBUSY and the program falls
into a deadlock. To avoid this situation, a receiving routine should take place when the
pmGetSendBuffer() returns ENOBUFS or EBUSY. Of course, this is not the case if it is
guaranteed that any pair of two nodes never trying to send messages mutually without
receiving.

14

2.2.3 MTU: Maximum Transfer Unit

Since PM supports multiple physical-layer protocols, the MTU (Maximum Transfer Unit)
is up to PM device. Further, the PM context in the score pmnet variable is the context of
PM/Composite, which means actual PM device in the composite device to send messages
may vary depending on the destination of the messages. The actual value of MTU depends
on message destination, the pmGetMtu() function is used to get the MTU value of a
destination node.

#include <score.h>
int pmGetMtu(pmContext *pmc, int node, size_t *mtup);

Figure 2.7: pmGetMtu()

Alternatively, a macro PM MIN MTU which is defined as the minimum length of MTU
in the various PM devices, independent from destination node, and it is guaranteed that
any message which length is less than or equal to the PM MIN MTU value can be sent to any
node. The value of the PM MIN MTU is constant and programming can be easier when the
macro is used, however, efficiency may be sacrificed. The MTU of PM/Myrinet is more
than 8,192 bytes, but the PM MIN MTU is less than 1,500 bytes.

2.2.4 PM Macros

Table 2.2: PM Macros

Macro Name Description

PM MAX NODE Maximum number of nodes
PM MIN MTU Minimum MTU among all PM devices
PM RMA MTU MTU of remote memory access
PM SUCCESS Return status indicating success

2.3 Thread Safety

2.3.1 Thread Safety in PMv2

The PMv2 communication functions are designed and implemented to be thread-safe.
There are two independent locks, one for message sending and another for message receiv-
ing, so that message sending and receiving can be overlapped. In message sending, a PM
context is locked between the pmGetSendBuffer() function call and the pmSend() function
call. Upon message receiving, a PM context is locked between the pmReceive() function
call and the pmReleaseReceiveBuffer() function call. When a thread tries to lock a
PM context which is already locked by another thread, then the pmGetSendBuffer() or
pmReceive() function returns EBUSY.

15

2.3.2 Shared PM Context

On an SMP cluster, the PM contexts allocated to a process are shared with the other pro-
cess(es) running on the same host. This is because each process sends a message by using
the same (actual) PM context. The lock mechanism of the PM context described in the
previous subsection is effective on those shared processes as well as the threads in a process.
Thus it is very important to shorten the code length between the the pmGetSendBuffer()
function call and the pmSend() function call and between the pmReceive() function call
and the pmReleaseReceiveBuffer() function call.

2.3.3 SCore-D Systemcall

All the SCore-D systemcalls is designed and implemented to be thread-safe.

2.4 scatter Sample Program

As in Figure 1.5, the scatter program distributes input data in a pipelined way. First of
all, a header file is shown in Figure 2.8 in which several cpp macros are defined.

#define NEXT_NODE (score_self_node+1)
#define PREV_NODE (score_self_node-1)
#define IS_PIPE_FIRST (score_self_node==0)
#define IS_PIPE_MIDDLE (score_self_node>0&&NEXT_NODE<score_num_node)
#define IS_PIPE_LAST (NEXT_NODE==score_num_node)

Figure 2.8: scatter header file

2.4.1 scatter: Pipeline Version

The functions shown in Figure 2.4 and Figure 2.6 are too naive to be used in a practical
application. The functions in Figure 2.9 and Figure 2.10 are more practical version of the
receive and send functions. The spinwait receive() is spin-waiting until it receives a
message. The score become idle() function is called when there is no message available.
As soon as a message is received, then the score become busy() function is called. This
function must be called before calling the pmReleaseReceiveBuffer() function, otherwise
the parallel job will be thought to be deadlocked.

The get send buffer() is also spin-waiting until it can find a room in the send buffer.
Here, if the pmGetSendBuffer() returns ENOBUFS or EBUSY, then the function calls message
receiving functions to avoid a possible deadlock. If a message can be found to receive and
the recv func argument is not NULL, then the received message is passed to the function
pointed by the VARrecv func variable to process the message.

To implement the scatter program of the first node, STDIN is read and write to a
local file, and then pass to the next node. Figure 2.11 shows the sample code of doing
this.

The pmTruncateBuffer() function is to shrink the buffer region obtained by the
pmGetSendBuffer() function. It is not allowed to expand the buffer region. In Figure

16

#include <string.h>
#include <errno.h>
#include <score.h>

int spinwait_receive(pmContext *pmc, caddr_t *buffp, size_t *lenp) {
int cc;

if((cc = pmReceive(pmc, buffp, lenp)) == ENOBUFS ||
cc == EBUSY) {

score_become_idle();
while((cc = pmReceive(pmc, buffp, lenp)) == ENOBUFS ||

cc == EBUSY);
}
score_become_busy();
return(cc);

}

Figure 2.9: spinwait receive()

2.11 the pmTruncateBuffer() function is used. The read file and pass next() func-
tion reads entire file from the given file descriptor as its argument, and the file content is
sent to the next node. In the do loop, firstly it allocates a send buffer region by calling
pmGetSendBuffer() and then read() is called to read the file. The send buffer region is
passed to the read() function so that memory copying is avoided. Then the buffer region
is truncated to the actual size which is returned by the read(). And finally the send
buffer is sent by calling the pmSend() function.

The mtu is set to the PM MIN MTU all the time. If the MTU value is obtained by calling
the pmGetMtu() function, however, it is not correct. Even on a cluster having only one
Ethernet network device, the cluster nodes can be SMP (or multi-core). This means that
the allocated PM network can be the composition of PM/Shmem and PM/Ethernet and
the MTUs can be different. Because this program is to forward the packets to the next
node, and the next node forwards the packets the next of the next node. Thus it is the
easiest to have the same packet size on all nodes of the pipeline. In most cases, however,
getting the MTU by calling the pmGetMtu() function is the correct way.

The very first part of each packet is the byte length read actually and casted to the
(uint16 t). This length value is converted to the network-byte-order so that the value
can be passed properly to the next host even if the byte-orders are different on nodes.

On the nodes whose node number is greater than 0, packets must be received and write
to a local file then pass the packet content to the next node. This code is shown in Figure
2.13.

2.4.2 Program Termination

SCore-D assumes that a parallel process is terminated when the all processes in the parallel
process are terminated. It is inconvenient to have a function which terminates the parallel
job when an error happens and program can not proceed. For this purpose, there is an
SCore-D system call, sc exit(), to terminate a parallel process (Figure 2.14) which not

17

int get_send_buffer(pmContext *pmc,
int dst,
caddr_t *sbuf_p,
size_t slen,
int (*recv_func)(caddr_t, size_t)) {

int cc;

while(1) {
cc = pmGetSendBuffer(pmc, dst, sbuf_p, slen);
if(cc != ENOBUFS && cc != EBUSY) break;
if(recv_func != NULL) {
while(1) {

caddr_t rbuf;
size_t rlen;

if((cc = pmReceive(pmc, &rbuf, &rlen)) != PM_SUCCESS) {
if(cc == ENOBUFS || cc == EBUSY) break;
return(cc);

} else {
if((cc = recv_func(rbuf, rlen)) != 0) return(cc);
if((cc = pmReleaseReceiveBuffer(pmc)) != PM_SUCCESS) {

return(cc);
}

}
}

}
}
return(cc);

}

Figure 2.10: get send message()

only terminates the calling process but also terminates entire parallel process1.
The argument of the sc exit() function is passed to the scrun process and will be

the exit value of the scrun process2. If a program is terminated by calling the normal
exit() function, then the exit code of the first node will be the exit code of the scrun

process.
Figure 2.15 shows the main() function of the scatter program. Together with the

code shown in this, Figure 2.11 and Figure 2.13, the scatter is completed eventually.
However, this is not sufficient yet to exhibit the full performance. Further, there are
something more to take care for a program to run under SCore described in the following
sections.

2.4.3 Compiling

The scorecc command is used to compile an SCore program written in C programming
language. The scorecc is a wrapper script which adds appropriate include file paths and
library archives needed for a program to run under SCore(Man page:49). Table 2.3 shows

1The sc exit() was firstly introduced in SCore 6.0.0. In the earlier versions and in SCore 6.0.0, there
is the sc terminate() function which behaves just like the sc exit() but having no argument to specify
the exit code.

2when the sc exit() function is called simultaneously on the different processes and the exit codes are
different, then the exit code of the scrun will be one of the values and no way to specify which to win.

18

#include <sys/types.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <errno.h>
#include <score.h>

int read_file_and_pass_next(pmContext *pmc, int fd_in, int fd_out) {
size_t mtu;
caddr_t sbuff;
uint16_t sz;
int cc;

/*** this is wrong ****
if((cc = pmGetMtu(pmc, next, &mtu)) != PM_SUCCESS) {

return(cc);
}
**** this is wrong ***/
mtu = PM_MIN_MTU;

do {
cc = get_send_buffer(pmc, NEXT_NODE, &sbuff, mtu, NULL);
if(cc != PM_SUCCESS) return(cc);

cc = read(fd_in, sbuff + sizeof(sz), mtu - sizeof(sz));
if(cc < 0) return(errno); // read error
sz = (uint16_t) cc;
(uint16_t) sbuff = htons(sz);
if(sz > 0) {
cc = write(fd_out, sbuff + sizeof(sz), (size_t) sz);
if(cc != sz) return(errno); // write error

}
cc = pmTruncateBuffer(pmc, (size_t) (sizeof(sz) + sz));
if(cc != PM_SUCCESS) return(cc);
cc = pmSend(pmc);
if(cc != PM_SUCCESS) return(cc);

} while(sz > 0);
return(0); // succeeded

}

Figure 2.11: read file and pass next()

#include <score.h>
int pmTruncateBuffer(pmContext *pmc, size_t len);

Figure 2.12: pmTruncateBuffer()

the list of wrapper scripts and corresponding programs in SCore.
Actual compilation is done by a C compiler such as gcc, GNU C compiler in many

cases. However, the scorecc command supports to use the C compilers other than the
gcc, such as Intel compiler C or PGI C compiler. The actual C compiler can be selected by
the compiler option. The score compiler list program lists how the compiler option
value and the actual back-end compiler are associated (Man page:84).

19

#include <sys/types.h>
#include <arpa/inet.h>
#include <string.h>
#include <unistd.h>
#include <errno.h>
#include <score.h>

int write_file_and_pass_next(pmContext *pmc, int fd_out) {
caddr_t rbuff, sbuff;
size_t len;
uint16_t sz;
int cc;

do {
cc = spinwait_receive(pmc, &rbuff, &len);
if(cc != PM_SUCCESS) return(cc);

if((sz = ntohs(*(uint16_t*) rbuff)) > 0) {
cc = write(fd_out, rbuff + sizeof(sz), (size_t) sz);
if(cc != sz) return(errno); // write error

}
if(!IS_PIPE_LAST) {
cc = get_send_buffer(pmc, NEXT_NODE, &sbuff, len, NULL);
if(cc != PM_SUCCESS) return(cc);
(void) memcpy(sbuff, rbuff, len);
if((cc = pmSend(pmc)) != PM_SUCCESS) return(cc);

}
cc = pmReleaseReceiveBuffer(pmc);
if(cc != PM_SUCCESS) return(cc);

} while(sz > 0); // EOF
return(0); // succeeded

}

Figure 2.13: spinwait receive() and write file and pass next()

#include <sc.h>
int sc_exit(int exno);

Figure 2.14: sc exit()

2.4.4 Debugging

PM DEBUG Environment Variable

Unfortunately, the error numbers which PM functions return are mostly device dependent
and not consistent. To understand how an error which PM functions report, there is the
environment variable PM DEBUG. The value of the PM DEBUG variable can be an integer, one,
two, three, or others (Table 2.4).

The messages produced by the PM functions are output to standard error output
(STDERR) which is output by the scrun process eventually. In general, the larger the
value, the more the messages output.

The environment variables set on the host where the scrun invoked are copied to
the every compute host where the parallel execution takes place. So the setting the
environment variable on the local host where the scrun is invoked is enough to output the
debug information on every compute host.

20

#include <stdio.h>
#include <score.h>
#include <sc.h>

int main(int argc, char **argv) {
pmContext *pmc;
int cc;

score_initialize();

if(score_num_node == 1) {
fprintf(stderr, T̀wo or more nodes required to run.\n’’);
exit(1);

}
pmc = score_pmnet[0];
if(IS_PIPE_FIRST) {

cc = read_file_and_pass_next(pmc, 0, 1); // 0:STDIN, 1:STDOUT
} else {

cc = write_file_and_pass_next(pmc, 1); // 1:STDOUT
}
if(cc != 0) sc_exit(1);
exit(0);

}

Figure 2.15: scatter main()

Table 2.3: Compile Commands in SCore

Script Name Note

scorecc C compiler
scorec++ C++ compiler
scoref77 F77 compiler
scoref90 F90 compiler†

scoreld Loader (Linker)
† GNU does not support F90 and

you have to have a commercial compiler.

Attaching Debugger

A program bug is the result of a program which will not run in the way programmer
does not expect. Thus it is very hard to expect when and where a bug of a program will
appear before the program runs. Further a parallel process is a set of Linux processes and
knowing which process hits a buggy code is also difficult in most case.

Using a parallel debugger such as DDT (Distributed Debugging Tool http://www.

allinea.com/index.php?page=48) is a good way to find program bugs. However, SCore have
a feature to debug a parallel program. The sc inspectme() function is an SCore-D sys-
temcall which asks SCore-D to attach a debugger to the process itself.

The first argument of the sc inspectme() is the value of the DISPLAY environment
and the second argument is the signal number of Linux. If the display argument is set
to NULL then the value of the DISPLAY will be took place. The second argument is used to
give users a hint assuming the error produces an exception signal and can be any value.

21

Table 2.4: Value of the PM DEBUG environment variable

Value Tag Output messages

0 - No information will be displayed. (Default)
1 Error Information of unrecoverable error
2 Warning Above and information on temporary error
3 Info Above and any information (even if succeeded)

Higher - More messages may be displayed depending on PM device

#include <sc.h>
int sc_inspectme(char *display, int signal)

Figure 2.16: sc inspectme()

The sc inspectme() function is only effective if the scrun is invoked with the debug

option. In all cases, the sc inspectme() does not return although it has the int type.
When the debug option and the proper DISPLAY value is set and X-Window server is

running on the host where the DISPLAY specifies, then an xterm window is pop up in which
gdb is attached to the calling process. Or when the debug option is set but the DISPLAY is
not set properly, then the gdb process attaching to the calling process is invoked and the
stack trace command of gdb is executed and then the gdb command terminates. If gdb
is running in an xterm window then the user can inspect the buggy program by entering
gdb commands in the window. If the value of the debug options is set to ddt and DDT is
properly installed, then DDT3 is invoked instead of invoking the gdb command.

If a runtime library which is designed to run under SCore has a signal handler for
the SIGSEGV signal to call the sc inspectme() function, then a debugger can be attached
automatically when the program tries to access illegal memory address, and let user know
where and how the erroneous situation happens. In the runtime library of MPICH-SCore
for example, the signal handler which calls the sc inspectme() function upon receiving
the SIGHUP, SIGILL, SIGFPE. SIGBUS, SIGSEGV, and SIGSYS signals. The SIGHUP signal is
delivered by the SCore-D, when SCore-D detects a deadlock in a parallel process (will be
described in Section 3.5.2).

Sometimes programmers put sanity check code into their programs. It is a good idea
to call the sc insepctme() function when the program violates the sanity check.

3DDT, Distributed Debugging Tool, is a commercial software developed by Allinea Software, UK.

22

2.5 Summary

Note on PMv2 Message Passing� �

Initialization

• score initialize() must be called in the very first phase of the program.

• score pmnet variable holds PM contexts, however, no PM context is avail-
able when only one node is allocated.

• When score initialize() returns, Allocated PM contexts are ready to
communicate.

Message Sending

• pmGetSendBuffer() and pmSend() must always be paired.

• Unable to cancel message sending

• Unable to send a message to the sender itself

• Unable to send zero length message

• MTU may vary depending on the destination node

• The message pointer obtained by pmGetSendBuffer() becomes obsolete
when pmSend() returns.

• In general, when pmGetSendBuffer() returns ENOBUFS or EBUSY, message
receiving routine must take place. Otherwise a deadlock may happen.

• The buffer region obtained by pmGetSendBuffer() can be truncated by
calling pmTruncateBuffer().

Message Receiving

• pmReceive() and pmReleaseReceiveBuffer() must always be paired.

• Unable to cancel message receiving

• Unable to change the order of message receiving

• Unable to receive zero length message

• The message pointer obtained by pmReceive() becomes obsolete when
pmReleaseReceiveBuffer() returns.

� �

23

Chapter 3

Advanced Programming

3.1 Signals

Some Linux signals are treated by the SCore system and behave differently from the
normal Linux commands. Those signals are handled in the scrun program and SCore-
D in different ways (Table 3.1).

Table 3.1: Signals in SCore

Signal User → scrun SCore-D → User Process

SIGHUP Broadcast Deadlock detected
SIGINT Broadcast -
SIGQUIT Trigger checkpoint Trigger checkpoint
SIGABRT Broadcast -
SIGKILL (unable to catch) Terminate parallel process
SIGUSR1 Broadcast -
SIGUSR2 Broadcast -
SIGTERM Kill parallel job -
SIGCONT Resume parallel job Start scheduling
SIGSTOP (unable to catch) Stop scheduling
SIGTSTP Suspend parallel job -
SIGURG Broadcast -

SIGWINCH Broadcast -

In Table 3.1, the ”broadcast” in the scrun column means the signal is forwarded and
broad-casted to the processes of the parallel job. For example, when the SIGINT (∧C)
is sent the scrun process, then the signal is broad-casted to the parallel job running on
compute hosts, and eventually the parallel job is terminated because of the signal if there
is no signal handler of the SIGINT is set in the parallel program.

The SIGHUP is sent to the parallel process when SCore-D detects dead lock of the
parallel process (See Section 3.5.2). The SIGQUIT signal (∧\) triggers checkpoint. The
SIGTSTP signal (∧Z) suspend the parallel job and the SIGCONT signals resume the suspended
parallel job. However, the SIGSTOP and SIGCONT are used by SCore-D for scheduling.

24

The parallel programs running on SCore should not have a signal handler for signals,
should not ignore nor block the signals used by SCore-D. For example, when a user program
sets a signal handler to the SIGQUIT and ignores the handler of the SCore library then
checkpoint never happens.

3.2 Checkpoint/Restart and Migration

In SCore before the version 6, there are some restrictions for a program to have a checkpoint
(and migration). The restrictions are listed in Table 3.2.

Table 3.2: Checkpoint Restrictions (Before SCore Version 6)
1 Multi-threaded (pthread) programs
2 Program linked with a dynamic library
3 Depending on the PID value

In SCore Version 6 or later, a new checkpoint code is introduced and those check-
point/migration restrictions in Table 3.2 are removed. However, some restrictions still
remain as shown in Table 3.3. This is because the checkpoint before SCore Version6 is
implemented at the library level, and the new checkpoint is implemented at the kernel
level and library level.

Table 3.3: Checkpoint Restrictions
4 Holding a hostname
5 Holding a TCP/IP connection
6 Depending on the value of gettimeofday()
7 Depending on the value of time()
8 Opening a file and rewrite some part of it
9 Truncating a file

A program running under SCore avoid those situations as long as possible. Or if
avoiding is very difficult but the restricted code can be small enough then the code re-
gion can be declared “uncheckpointable” by calling the functions in Figure 3.1. If the
restricted code region is surrounded by the score ckpt enter uncheckpointable() and
score ckpt leave uncheckpointable(), and checkpoint is triggered in the middle of the
region unable to have a checkpoint, then the start of checkpoint procedure is postponed
until the execution goes out of the region.

#include <sc.h>
score_ckpt_enter_uncheckpointable(void);
score_ckpt_leave_uncheckpointable(void);

Figure 3.1: score ckpt enter uncheckpointable() and
score ckpt leave uncheckpointable()

A program can trigger checkpointing by calling the sc checkpoint() function, al-
though checkpointing can be triggered periodically or by sending the SIGQUIT signal to

25

the scrun process. The function returns when the checkpointing is done or the program
is restarted from a checkpoint.

#include <sc.h>
sc_checkpoint(void);

Figure 3.2: sc checkpoint()

3.3 Blocking Receive

There is no blocking receive function in PMv2, however, PMv2 supports blocking receive.
To implement blocking receive, the Linux select() or poll() function should be used to
wait for incoming messages in a blocking way. Not having some dedicated block receive
functions and blocking by calling select() (or poll()) function has an advantage. A
blocking receiving program can wait for not only incoming messages via PM network but
also some other Linux I/O events, such as TCP connections, reading pipes, etc.

#include <score.h>
int pmGetFd(pmContext *pmc, int *fdarray, int *nfdp);
int pmBeforeSelect(pmContext *pmc);
int pmAfterSelect(pmContext *pmc);

Figure 3.3: pmGetFd(), pmBeforeSelect() and pmAfterSelect()

In the Linux kernel, interrupt is usually used to wake up user process which is waiting
and blocking at the select() systemcall functions. However, this means that every time
a message is received, an interrupt is raised. And the kernel should handle the number of
interrupts when a parallel process frequently communicates. While the user-level commu-
nication is not using any interrupts to eliminate the interrupt handling overhead in the
kernel. Thus to get low overhead, interrupts should be disabled, however, to implement
blocking receive, interrupt is a must have.

To tackle this problem, PMv2 has a unique feature. The pmBeforeSelect() function
ask the PM driver to enable interrupt (if possible). The pmAfterSelect() function dis-
ables interrupt. When the select() function is sandwiched by those functions, then the
blocking receive can be implemented and the interrupt overhead can be minimized.

The file descriptors passed to the select() function can be obtained by calling the
pmGetFd() function. The fdarray variable is a pointer to an array of file descriptors to
hold the returned file descriptors, and the nfdp is a pointer to an integer which will be
set to the number of file descriptors. Whatever the initial value pointed by nfdp is, the
value is always set to the number of file descriptors to be returned. To get the number of
file descriptors only, the nfdp variable of the pmGetFd() function should be set to zero.
The number of the returned file descriptors are up to PM device and all the returned file
descriptors should be passed to the select() function.

The scatter described in Section 2.4 is not blocking for receiving messages and it
consumes almost 100% of CPU time. This is problematic because the scatter can be
used with the other parallel program connected with the SCore pipe as shown in Figure

26

1.3. The most of the CPU power should be consumed by the program which is piped with
the scatter program. Therefore the scatter program should be blocked when it waits
for incoming messages. Figure 3.4 is the code of the blocking receive() function which
can be used as the nonblocking receive() function in Figure 2.13 alternatively.

#include <sys/types.h>
#include <sys/time.h>
#include <malloc.h>
#include <string.h>
#include <unistd.h>
#include <errno.h>
#include <score.h>

int blocking_receive(pmContext *pmc, caddr_t *bufp, size_t *lenp) {
static int *fd_net = NULL;
static int num_fds, fd_max;
fd_set fds;
int cc, n;

if(fd_net == NULL) { // initialization
num_fds = 0;
(void) pmGetFd(pmc, NULL, &num_fds); // returns ENOSPC always
fd_net = (int*) malloc(sizeof(int) * num_fds);
if(fd_net == NULL) return(ENOMEM);
if((cc = pmGetFd(pmc, fd_net, &num_fds)) != PM_SUCCESS) {
return(cc);

}
fd_max = fd_net[0];
for(n=1; n<num_fds; n++) {
fd_max = (fd_net[n] > fd_max) ? fd_net[n] : fd_max;

}
fd_max++;

}
if((cc = pmBeforeSelect(pmc)) != PM_SUCCESS) return(cc);
while(1) {

if((cc = pmReceive(pmc, bufp, lenp)) == PM_SUCCESS) break;
if(cc == EBUSY) continue;
if(cc != ENOBUFS) return(cc); // Error !!

FD_ZERO(&fds);
for(n=0; n<num_fds; n++) FD_SET(fd_net[n], &fds);
(void) select(fd_max, &fds, NULL, NULL, NULL);

}
if((cc = pmAfterSelect(pmc)) != PM_SUCCESS) return(cc);
return(PM_SUCCESS);

}

Figure 3.4: blocking receive()

It should be noted that there is a race condition between the enabling interrupt by
calling the pmBeforeSelect() function and the arrival of messages. Further, there can
be the case where the select() returns a positive integer, this means there are some file
descriptors which are ready to receive, but there is no arrived messages indeed. This is up
to the design and implementation of a PM device driver. Thus it is not wise to depend
on the returned value of the select() function.

27

3.4 Barrier Synchronization and Send Completion

The sc barrier() function is the barrier synchronization systemcall of SCore-D. This
barrier synchronization is not faster than the one implemented at the user application
level, however, this function can be used in the very early stage of a runtime library where
internal communication is not fully setup yet, but there is a need of barrier synchronization.
This function is not suitable for the implementation of the MPIBarrier() function, for
example.

#include <sc.h>
int sc_barrier(void);

Figure 3.5: sc barrier()

The pmIsSendDone() function checks if all of the outstanding messages in a PM context
are received in the receive buffer of each destination node, and returns PM SUCCESS if true,
and returns EBUSY if not true.

#include <score.h>
int pmIsSendDone(pmContext *pmc);

Figure 3.6: pmIsSendDone()

3.5 Deadlock Detection

3.5.1 Definition of Deadlock in SCore

A communicating process has two states, executing or waiting for messages. A process in
the executing state is executing or sending messages. A process in the waiting state has
nothing to do but waiting. The waiting state becomes executing state when a message is
received. Messages can only be sent by a process which is executing. The executing state
becomes waiting state when a process is waiting for message(s) such as answer or request
from the other node(s). In a parallel process, if every process is in the waiting state and
there is no messages in the network, then none of the process will have the chance to
become the executing state. Thus the parallel execution of this parallel process will not
proceed any more. This situation is the definition of “deadlock” in SCore1.

If the deadlocked state of a parallel process could be detected and informed to the
programmer of the parallel program, it would be some help for understanding what is
happening on his/her program. Scheduling of a deadlocked parallel process is wasting
CPU resource. If the deadlocked parallel process would be aborted by a cluster operating
system CPU then the resource could be saved and can be allocated to the other parallel
processes. Thus the CPU resource of a cluster can be utilized more. Unless the deadlock
detection mechanism, a deadlocked parallel process may run hours uselessly.

1Precisely speaking, this is not a deadlock because a deadlock happens when two or more entities have
a resource contention. However, according to this deadlock definition of SCore, a deadlock can happen on
a parallel process consisting of only one process if it tries to receive messages from the other nodes.

28

3.5.2 Deadlock Detection

To detect a deadlock state of a parallel process, 1) there should be an entity out of the
parallel process which detects the deadlock state, 2) the entity is able to obtain the state of
individual process, executing or waiting, and 3) the entity can detect if there is a message
which is not yet received by the processes.

In SCore, SCore-D can be the entity out of the parallel process, and can find if there is
a message which is not yet received by the process in the parallel process, because SCore-
D shares PM contexts with the processes. Thus, if SCore-D can obtain the state of the
processes in a parallel process, then SCore-D can detect the deadlock state.

#include <score.h>
int pmGetMessageQueueStatus(pmContext *pmc, pmMessageQueueStatus
*statp);

typedef struct pm_message_queue_status {
int receive; /* Received messages in queue */
int send; /* Sending messages in queue */
int read; /* There are outstanding remote reads */

} pmMessageQueueStatus;

Figure 3.7: pmGetMessageQueueStatus() and pmMessageQueueStatus structure

The pmGetMessageQueueStatus() function returns the number of outstanding mes-
sages in queues of a PM context. The value of receive in the pmMessageQueueStatus is
the number of received messages which is not yet extracted by calling the pmReceive()

function. The value of send is the number of messages which are enqueued by calling
the pmSend() function but the messages which may not yet be enqueued into the receive
buffer of its destination. The value of read is the number of outstanding read request (a
Zero-Copy operation).

At the time of gang scheduling, SCore-D flushes the messages in the network so that the
context can be swapped with the context of the other parallel process. Every time parallel
processes are gang-scheduled, SCore-D checks if there are some outstanding messages in
the PM context and thus SCore-D can get to know the number of outstanding messages
in a parallel process.

#include <score.h>
void score_become_idle(void);
void score_become_busy(void);

Figure 3.8: score become idle() and score become busy()

Unfortunately Linux or Unix does not provide a way for SCore-D to obtain the states
of processes in a parallel process. Instead, the functions to let SCore-D know the current
state of the process are prepared in SCore. The score become idle() function must
be called by a parallel program when it has nothing to do but is waiting for incoming
messages. The score become busy() function must be called when it has something to
do. Indeed those functions only set a flag, named idle flag, in C-Area, so that SCore-
D can sample the value of the flag. Thus SCore-D can get the state of processes and can
detect the deadlock state of a parallel process.

29

3.5.3 Real-Time Monitor

Calling the score become idle() and score become busy() functions are up to user
program (or runtime library). If a program never calls those functions, then SCore-D is
unable to detect a deadlock state. However, if a program properly set the flag, then
SCore-D samples the value and SCore-D can display the load information of the parallel
process. This is called “real-time monitor” and when the monitor option is set to the
scrun program, then scrun displays an X-Window which displays the activity of a parallel
process in real-time. Figure 3.9 shows the example of the monitor window.

Figure 3.9: Example of Real-Time Monitor (CPU)
The higher and redder the bar, the higher the load.

In the phase of program or runtime development, the flag might be set erroneously and
the execution of the program can be considered mistakenly as a deadlock. In this case, if
the noidle option is set to the scrun program, and the deadlock detection mechanism is
disabled.

The real-time monitoring the load of a process can be very helpful to see what is going
on his/her program intuitively, because the programs using PM are usually busy-waiting
for incoming messages, instead of blocking wait. And processes always consume 100% of
CPU time, however, sometimes the processes are just waiting for incoming messages but
has nothing to do indeed. The Linux ps or top commands are useless to see how mush
user program is busy or not actually.

SCore-D can display monitor window not only for the CPU load, but also communi-
cation frequency, memory and disk usage. As shown in Table 3.4, scrun can accept those
monitor option values. The option values of usr0 and usr1 are used to display the values
which are set by a user program. The sc set monitor() function sets the value, in the
range of 0 to 255, to be displayed in the real-time monitor window.

#include <sc.h>
void sc_set_monitor(int which, unsigned char value);

Figure 3.10: sc set monitor()

30

Table 3.4: scrun Real-Time Monitor Option Values

Option Value Monitoring

load CPU Usage
comm Communication Frequency

memory Memory Usage
disk Disk Usage
usr0 The value set by user program
usr1 The value set by user program

3.6 Optional PM Operations

PMv2 allows for a PM device to have some optional functions. In this section, the usage
of those optional functions are described. However, a program should not depends solely
on those functions. Otherwise the program would depend on some specific PM devices.

3.6.1 Attributes of PM Context

#include <score.h>
int pmGetContextConfig(pmContext *pmc, pmContextConfig *configp);

Figure 3.11: pmGetContextConfig()

The pmGetContextConfig() function is to obtain the information of a PM context.
It returns pmContextConfig (Figure 3.12). Here, the most important member of the
structure is the option bits. Each bit of the variable represents the availability of an
optional function.

typedef struct pm_context_config {
const char *type; /* PM device name */
int number; /* Context number */
int nodes; /* Number of nodes */
size_t mtu; /* MTU */
size_t size; /* Size of context */
unsigned long option; /* Supported options */

} pmContextConfig;

Figure 3.12: pmContextConfig structure

Table 3.5 lists the macros defining the option bits and corresponding function. If the
bit is set, the function is available on the context. Otherwise the calling of the function
returns ENOSYS. In PM/Composite, the option bits are the bit-wise AND of the member
PM contexts. Note that some of the option bits are reserved for the internal use.

31

Table 3.5: Option Bits
Define Macro Function

PM OPT REMOTE WRITE Remote Memory Write (One-Sided)
PM OPT REMOTE READ Remote Memory Read (One-Sided)

unsigned long get_pm_option_bits(pmContext *pmc) {
pmContextConfig config;
int cc = pmGetContextConfig(pmc, &config);
if(cc != PM_SUCCESS) return(0);
return(config.option);

}

Figure 3.13: get pm option bits()

3.6.2 One-sided Communication

The “Remote Memory Write” operation allows a program to write memory content to
the memory region on a remote host. The “Remote Memory Read” operation allows a
program to read memory content from a remote host. Those operation is also called “one-
sided communication” which means there is no need of programming of explicit protocol
handling on a remote host. The term of “zero-copy communication” is also used, however,
the number of copying by software depends on the PM device, thus the term of “zero-copy”
is not precise.

Table 3.6: Optional Functions
PM Device Remote Memory Write Remote Memory Read

Shmem no2 yes
Myrinet yes yes
Ethernet yes yes

Table 3.6 shows which PM device has which optional function(s). Myrinet has a
processor and DMA engines on its NIC, and it is unnecessary to copy messages by software.
On the other hand, PM/Shmem has no physical device nor DMA engine, a message is
copied only once from a source process to a destination process on the same host. This
one-copy message transfer is done by the PM/Shmem kernel driver to be one-sided. The
remote memory access of PM/Ethernet is also done by PM/Ethernet kernel driver to
implement one-sided communication.

3.6.3 Ordering Rule

In PM’s normal message passing, message order on the same source node and destination
node is preserved. As in the normal message send receive, the order of remote memory
operations is also preserved. The remote memory read operation after a remote memory
write operation on the same memory region should reflect the memory content of the
previous remote memory write operation. However, this is not the case when normal
message sending and remote memory access operation to the same node are intermixed.

32

When a remote memory access operation takes place after a normal message sending, the
remote memory access operation MAY overtake the previous normal messages. On the
other hand, a normal message sending after a remote memory access never overtake the
previous remote memory access.

3.6.4 PM Address Handle

All memory region which is the target of remote memory operation must be pinned down
in advance. Since the pinning memory pages is a costly operation, frequent pinning and
unpinning operations can result in additional overhead. To avoid this overhead, PM/ in-
troduced pin-down cache in which pinned memory pages are placed in the cache and actual
unpinning memory pages are postponed until the cache overflows. Thus pinning memory
pages which is in the cache do not have to pin down.

#include <score.h>
int pmMLock(pmContext *pmc, int rmt_node, caddr_t addr, size_t len,
pmAddrHandle *hndlp);
int pmMUnlock(pmContext *pmc, int rmt_node, caddr_t addr, size_t len);

Figure 3.14: pmMLock() and pmMUnlock()

The pmMLock() function is to lock (pin-down) memory pages and the pmMUnblock()

function is to unlock (unpin) memory pages. Note that the address (addr) and length
(len) of the pinned memory region must be page-aligned. The pmMLock() function re-
turns pmAddrHanlde structure which points to the locked (pinned) memory region. The
pmMLock() function and pmMUnlock() function must always be paired properly.

The actual memory pinning operation is up to PM device. Since actual PM device in
a PM/Composite to communicate is chosen according to the destination, the remote node
(rmt node) must be specified to lock or unlock a memory region. Instead, PM NODE ANY

can be specified as a remote node. In this case, the lock or unlock takes place on all PM
devices which a PM/Composite context has. Specifying PM NODE ANY is easier to program,
however, it incurs additional overhead to lock or unlock.

The allocate locked buffer() function allocates a buffer region by calling the posix memalign()

function which can allocate a memory region with the specified alignment. In this case,
the region is page-aligned because the entire allocated memory region can be locked. Then
the memory region is locked by calling the pmMLock() function. In this case, PM NODE ANY

is used to specify the node number.
PM address handle can be sent to the other node by the PM’s message passing with-

out taking care of the byte order. Figure 3.16 shows the send local handle() and
exchange handle() functions to send and receive a PM address handle.

3.6.5 One-sided Communication

The pmWrite() function writes the local memory content pointed by loc handle to the
remote memory region pointed by rmt handle on node rmt node. The pmRead() func-
tion reads the remote memory content pointed rmt handle into the local memory region
pointed by loc Handel. In each function, every memory region must be locked by calling
the pmMLock() function described in the previous subsection. In case to send a memory

33

#include <stdlib.h>
#include <errno.h>
#include <score.h>

#define BUFF_LEN 4096 // must be power of 2

char *buffer;
pmAddrHandle loc_handle;

int allocate_locked_buffer(pmContext *pmc) {
int cc;

cc = posix_memalign((void**)&buffer,
sysconf(_SC_PAGESIZE),
BUFF_LEN);

if(cc != 0) return(cc);
cc = pmMLock(pmc, PM_NODE_ANY, buffer, BUFF_LEN, &loc_handle);
if(cc != PM_SUCCESS) return(cc);
return(PM_SUCCESS);

}

Figure 3.15: allocate locked buffer()

region which is a sub region of the locked region, the pmAddrHandle can be added with
offset.

The pmIsWriteDone() function returns PM SUCCESS if the local memory content is sent
by the pmWrite() to the remote node and any modification on the local content does not
affect to the content of remote memory. However, this does not mean the remote memory
has already been updated by the local memory content. The pmIsWriteDone() function
returns EBUSY when the remote memory write operation is not yet completed.

There is no PM functions to know when the remote memory content is updated by the
pmWrite() function. Remember the ordering rule in Subsection 3.6.3. Sending a normal
messaage to the same node using the pmGetSendBuffer() and pmSend() functions after
calling the pmWrite() function, and when the message is received at the receiver node
then the memory content on the receiver node is guaranteed to be updated.

The completion of the pmRead() can be checked by calling the pmIsReadDone() func-
tion. When the local memory content is replaced by the remote content, the pmIsReadDone()
function returns PM SUCCESS, unless it returns EBUSY.

3.6.6 scatter: One-sided Version

Figure 3.20 shows the new version of the main() function which is capable of switching
protocol according to the PM capability. At the beginning, it checks the option bits of
the allocated PM network. If the allocated PM network can handle remote memory write
operation, then it uses PM’s remote memory write. If the network can handle remote
memory read, the it uses PM’s remote memory read. Otherwise it communicates with
normal message passing.

34

#include <string.h>
#include <errno.h>
#include <score.h>

pmAddrHandle loc_handle, rmt_handle;

int send_local_handle(pmContext *pmc, int dst) {
caddr_t buff;
int cc;

cc = get_send_buffer(pmc, dst, &buff, sizeof(pmAddrHandle), NULL);
if(cc != PM_SUCCESS) return(cc);
memcpy(buff, &loc_handle, sizeof(pmAddrHandle));
return(pmSend(pmc));

}

int recv_remote_handle(pmContext *pmc) {
caddr_t buff;
size_t len;
int cc;

cc = spinwait_receive(pmc, &buff, &len);
if(cc != PM_SUCCESS) return(cc);
if(len != sizeof(pmAddrHandle)) return(EIO);
memcpy(&rmt_handle, buff, sizeof(pmAddrHandle));
return(pmReleaseReceiveBuffer(pmc));

}

Figure 3.16: send local handle() and passing handle()

#include <score.h>
int pmWrite(pmContext *pmc, int rmt_node, pmAddrHandle rmt_handle,
pmAddrHandle loc_handle, size_t len);
int pmRead(pmContext *pmc, int rmt_node, pmAddrHandle rmt_handle,
pmAddrHandle loc_handle, size_t len);

Figure 3.17: pmWrite() and pmRead()

Scatter: Remote Memory Write

In the rdma write() function, it allocates a locked (pinned down) memory region on each
node. The PM address handle which points to the locked region is then passed to the
previous node so that the previous node can access the region.

Figure 3.22 shows how the pipilne using the pmWrite()works. The rdma write head()

function (Figure 3.23 must be called at the first node of the pipeline and the rdma write tail()

function must be call on the other nodes. The locked buffer region pointed by the buffer

must be confirmed to be ready by calling the is write done() function before the buffer
content is destroyed by reading from a file or calling the pmWrite() function.

Scatter: Remote Memory Read

In the rdma read() function, it allocates a locked (pinned down) memory region on each
node. The PM address handle which points to the locked region is then passed to the next
node so that the next node can access the region to fetch the memory content.

35

#include <score.h>
int pmIsWriteDone(pmContext *pmc);
int pmIsReadDone(pmContext *pmc);

Figure 3.18: pmIsWriteDone() and pmIsReadDone()

#include <errno.h>
#include <score.h>

int is_write_done(pmContext *pmc) {
int cc;
while((cc = pmIsWriteDone(pmc)) == EBUSY);
return(cc);

}

int is_read_done(pmContext *pmc) {
int cc;
while((cc = pmIsReadDone(pmc)) == EBUSY);
return(cc);

}

Figure 3.19: is write done() and is read done()

Figure 3.26 shows how the pipilne using the pmRead() works. The rdma read head()

function (Figure 3.23 must be called at the first node of the pipeline and the rdma read tail()

function must be call on the other nodes. The locked buffer region pointed by the buffer

must be confirmed to be ready by calling the is read done() function before the buffer

content is passed to the next node.

36

#include <stdio.h>
#include <score.h>
#include <sc.h>
#include s̀catter.h’’

int main(int argc, char **argv) {
pmContext *pmc;
unsigned long options;
int cc;

score_initialize();

if(score_num_node == 1) {
fprintf(stderr, T̀wo or more nodes required to run.\n’’);
exit(1);

}
pmc = score_pmnet[0];
options = get_pm_option_bits(pmc);
if(options & PM_OPT_REMOTE_WRITE) {

cc = rdma_write(pmc, 0, 1);
} else if(options & PM_OPT_REMOTE_READ) {

cc = rdma_read(pmc, 0, 1);
} else {

if(IS_PIPE_FIRST) {
cc = read_file_and_pass_next(pmc, 0, 1);

} else {
cc = write_file_and_pass_next(pmc, 1);

}
}
if(cc != 0) sc_exit(1);
exit(0);

}

int get_send_buffer_uint16(pmContext *pmc, int dst, caddr_t *buff_p) {
int cc;
cc = get_send_buffer(pmc, dst, buff_p, sizeof(uint16_t), NULL);
return(cc);

}

Figure 3.20: scatter main() with RDMA

37

#include <score.h>
#include s̀catter.h’’

char *buffer;

int rdma_write(pmContext *pmc, int fd_in, int fd_out) {
int cc;

if((cc = allocate_locked_buffer(pmc)) == PM_SUCCESS) {
if(IS_PIPE_FIRST) {
if((cc = recv_remote_handle(pmc)) == PM_SUCCESS) {

cc = rdma_write_head(pmc, fd_in, fd_out);
}

} else if(IS_PIPE_MIDDLE) {
cc = send_local_handle(pmc, PREV_NODE);
if(cc == PM_SUCCESS) {

if((cc = recv_remote_handle(pmc)) == PM_SUCCESS) {
cc = rdma_write_tail(pmc, fd_out);

}
}

} else { // IS_PIPE_LAST
cc = send_local_handle(pmc, PREV_NODE);
if(cc == PM_SUCCESS) cc = rdma_write_tail(pmc, fd_out);

}
}
return(cc);

}

Figure 3.21: rdma write()

Figure 3.22: Protocol Diagram of RDMA-Write

38

#include <errno.h>
#include <score.h>
#include s̀catter.h’’

int rdma_write_head(pmContext *pmc, int fd_in, int fd_out) {
caddr_t buff;
size_t len;
int cc;

while(1) {
cc = read(fd_in, buffer, BUFF_LEN);
if(cc < 0) return(errno); // read error
if((len = (size_t) cc) > 0) {
while(1) {

cc = pmWrite(pmc, NEXT_NODE, rmt_handle, loc_handle, len);
if(cc == PM_SUCCESS) break;
if(cc != ENOBUFS && cc != EBUSY) return(cc);

}
}
cc = get_send_buffer_uint16(pmc, NEXT_NODE, &buff);
if(cc != PM_SUCCESS) return(cc);
(uint16_t) buff = htons((uint16_t) len);
if((cc = pmSend(pmc)) != PM_SUCCESS) return(cc);

if(len == 0) break;
cc = write(fd_out, buffer, len);
if(cc != len) return(errno); // write error

cc = blocking_receive(pmc, &buff, &len);
if(cc != PM_SUCCESS) return(cc);
cc = pmReleaseReceiveBuffer(pmc);
if(cc != PM_SUCCESS) return(cc);

if((cc = is_write_done(pmc)) != PM_SUCCESS) return(cc);
}
return(PM_SUCCESS);

}

Figure 3.23: rdma write head()

39

#include <errno.h>
#include <score.h>
#include s̀catter.h’’

int rdma_write_tail(pmContext *pmc, int fd_out) {
caddr_t buff;
size_t len;
int cc;

while(1) {
cc = blocking_receive(pmc, &buff, &len);
if(cc != PM_SUCCESS) return(cc);
len = (size_t) ntohs(*(uint16_t*) buff);
cc = pmReleaseReceiveBuffer(pmc);
if(cc != PM_SUCCESS) return(cc);

if(!IS_PIPE_LAST) {
if(len > 0) {

while(1) {
cc = pmWrite(pmc, NEXT_NODE, rmt_handle, loc_handle, len);
if(cc == PM_SUCCESS) break;
if(cc != ENOBUFS && cc != EBUSY) return(cc);

}
}
cc = get_send_buffer_uint16(pmc, NEXT_NODE, &buff);
if(cc != PM_SUCCESS) return(cc);
(uint16_t) buff = htons((uint16_t) len);
if((cc = pmSend(pmc)) != PM_SUCCESS) return(cc);

}
if(len == 0) break;
cc = write(fd_out, buffer, len);
if(cc != len) return(errno); // write error

if((cc = is_write_done(pmc)) != PM_SUCCESS) return(cc);

cc = get_send_buffer(pmc, PREV_NODE, &buff, 1, NULL);
if(cc != PM_SUCCESS) return(cc);
if((cc = pmSend(pmc)) != PM_SUCCESS) return(cc);
if(!IS_PIPE_LAST) {
cc = blocking_receive(pmc, &buff, &len);
if(cc != PM_SUCCESS) return(cc);
cc = pmReleaseReceiveBuffer(pmc);
if(cc != PM_SUCCESS) return(cc);

}
}
return(PM_SUCCESS);

}

Figure 3.24: rdma write tail()

40

#include <score.h>
#include s̀catter.h’’

int rdma_read(pmContext *pmc, int fd_in, int fd_out) {
int cc;

if((cc = allocate_locked_buffer(pmc)) == PM_SUCCESS) {
if(IS_PIPE_FIRST) {
if((cc = send_handle(pmc, NEXT_NODE)) == PM_SUCCESS) {

cc = rdma_read_head(pmc, fd_in, fd_out);
}

} else if(IS_PIPE_MIDDLE) {
if((cc = send_local_handle(pmc, NEXT_NODE)) == PM_SUCCESS) {

if((cc = recv_remote_handle(pmc)) == PM_SUCCESS) {
cc = rdma_read_tail(pmc, fd_out);

}
}

} else {
if((cc = recv_remote_handle(pmc)) == PM_SUCCESS) {

cc = rdma_read_tail(pmc, fd_out);
}

}
}
return(cc);

}

Figure 3.25: rdma read()

Figure 3.26: Protocol Diagram of RDMA-Read

41

#include <errno.h>
#include <score.h>
#include s̀catter.h’’

int rdma_read_head(pmContext *pmc, int fd_in, int fd_out) {
caddr_t buff;
size_t len, sz;
int cc;

while(1) {
cc = read(fd_in, buffer, BUFF_LEN);
if(cc < 0) return(errno); // read error
len = (size_t) cc;

cc = get_send_buffer_uint16(pmc, NEXT_NODE, &buff);
if(cc != PM_SUCCESS) return(cc);
(uint16_t) buff = htons((uint16_t) len);
if((cc = pmSend(pmc)) != PM_SUCCESS) return(cc);

if(len == 0) break;
cc = write(fd_out, buffer, len);
if(cc != len) return(errno); // write error

cc = blocking_receive(pmc, &buff, &sz);
if(cc != PM_SUCCESS) return(cc);
cc = pmReleaseReceiveBuffer(pmc);
if(cc != PM_SUCCESS) return(cc);

}
return(PM_SUCCESS);

}

Figure 3.27: rdma read head()

42

#include <errno.h>
#include <score.h>
#include s̀catter.h’’

int rdma_read_tail(pmContext *pmc, int fd_out) {
caddr_t buff;
uint16_t l;
size_t len, sz;
int cc;

while(1) {
cc = blocking_receive(pmc, &buff, &sz);
if(cc != PM_SUCCESS) return(cc);
if(sz == sizeof(uint16_t)) len = ntohs(*(uint16_t*) buff);
cc = pmReleaseReceiveBuffer(pmc);
if(cc != PM_SUCCESS) return(cc);

if(len > 0) {
while(1) {

cc = pmRead(pmc, PREV_NODE, rmt_handle, loc_handle, len);
if(cc == PM_SUCCESS) break;
if(cc != ENOBUFS && cc != EBUSY) return(cc);

}
if((cc = is_read_done(pmc)) != PM_SUCCESS) return(cc);

}
if(!IS_PIPE_LAST) {
cc = get_send_buffer_uint16(pmc, NEXT_NODE, &buff);
if(cc != PM_SUCCESS) return(cc);
(uint16_t) buff = htons((uint16_t) len);
if((cc = pmSend(pmc)) != PM_SUCCESS) return(cc);

}
if(len == 0) break;
cc = get_send_buffer(pmc, PREV_NODE, &buff, 1, NULL);
if(cc != PM_SUCCESS) return(cc);
if((cc = pmSend(pmc)) != PM_SUCCESS) return(cc);

cc = write(fd_out, buffer, len);
if(cc != len) return(errno); // write error

if(!IS_PIPE_LAST) {
cc = blocking_receive(pmc, &buff, &sz);
if(cc != PM_SUCCESS) return(cc);
if(sz == sizeof(uint16_t)) len = ntohs(*(uint16_t*) buff);
cc = pmReleaseReceiveBuffer(pmc);
if(cc != PM_SUCCESS) return(cc);

}
}
return(0);

}

Figure 3.28: rdma read tail()

43

Chapter 4

Other Functions

4.1 Resource Specification

As described in Section 1.4.1, resource restrictions can be specified within a user program.
To do this, some resource specification macros are defined (Figure 4.1).

#include <score_resource.h>
SCORE_RSRC_NUM_NODES(MIN, MAX);
SCORE_RSRC_NUM_PROCS(N);
SCORE_RSRC_NUM_NETS(N);
SCORE_RSRC_ZEROCOPY;
SCORE_RSRC_HETERO_NODES;
SCORE_RSRC_NOCKPT;

Figure 4.1: Resource Macros

SCORE RSRC NUM NODES(MIN,MAX) This macro limits the number of nodes to run a parallel
program. The number of nodes must be greater than or equal to MIN value and be
less than or equal to MAX value.

SCORE RSRC NUM PROCS(N) This macro specifies the number of processes in a host to be
allocated by SCore-D.

SCORE RSRC NUM NETS(N) This macro specifies the number of network sets to be allocated
by SCore-D.

SCORE RSRC ZEROCOPY If this is declared, then the network having the one-sided commu-
nication functions must be allocated by SCore-D.

SCORE RSRC HETERO NODES If this macro is declared in a program, then the program can
run on a heterogeneous cluster. When the heterogeneous option of the scrun pro-
gram is specified, an error message is output.

SCORE RSRC NOCKPT If this macro is declared in a program, then checkpoint is disabled
in the program. When the checkpoint option of the scrun program is specified, a
warning message is output and the checkpoint option is ignored.

44

4.2 SCore-D API

Runtime Options

The score get opt() function is to get the scrun option. This function works just like
the getenv() of Linux. The keyword argument is the keyword of the option to get, and
the function returns the value if the option is present.

#include <score_options.h>
char *score_get_opt(char *keyword)

Figure 4.2: score get opt()

Flushing Standard and Error Messages

Since the STDOUT and STDERR of every process is merged and forwarded to the scrun

process, there must be a special function to guarantee the output messages are output by
the scrun indeed. The sc flush() function does this.

#include <score_options.h>
char *sc_flush(void)

Figure 4.3: sc flush()

Temporary File

When a program wants to have a temporary file whose life time is the same as the parallel
job, then use the functions described in Figure 4.4. When the parallel job terminates, then
the files created by the functions are deleted by SCore-D. The filename arguments of those
functions must not contain any slash (/) character. The sc create temporary file()

creates a temporary file and the sc open temporary file() opens an existing file and re-
turn the file descriptors. The sc unlink temporary file() function removes the specified
file.

#include <sc.h>
int sc_create_temporary_file(char *filename, int *fd);
int sc_open_temporary_file(char *filename, int *fd);
int sc_unlink_temporary_file(char *filename);

Figure 4.4: Temporary File Operation Functions

Signal Broadcast

The sc signal bcast() function broadcasts the signal specified by the signal argument.

45

#include <signal.h>
#include <sc.h>
int sc_signal_bcast(int signal);

Figure 4.5: sc signal bcast()

Sleep

The sc sleep() function sleeps for the time duration specified by the sec argument in
second. This function is similar to the sleep() function of Linux. However, the sleep()

function does not work properly under the SCore-D because of the SIGSTOP and SIGCONT

signals used for gang scheduling of SCore-D. Further the parallel job calling the sc sleep()

function will be descheduled for the specified time duration, while the sleep() function
sleeps on the process calling the function.

#include <sc.h>
int sc_sleep(int sec);

Figure 4.6: sc sleep()

Yielding

The sc yield() function is similar to the sched yield() function of Linux. It shall force
the running parallel job to be descheduled temporarily.

#include <sc.h>
int sc_yield(void);

Figure 4.7: sc yield()

46

Appendix A

Glossary

FEP Front End Process (FEP) communicates with SCore-D and submit a parallel job.

Host Host has a hostname and may have one or more CPUs (cores) inside.

Compute Host The hosts where a parallel program runs.

Server Host The host where several SCore server processes are running.

User Host The host where users compile their program and submit their program
to run on compute hosts.

PM Context

Node Node is an entity to communicate with, in most cases, node is a Linux (Unix)
process.

Parallel Job A scheduling unit which may consists of one or more parallel process.

Parallel Process A set of Linux (Unix) processes which are derived from a parallel
program.

PMV2 PMv2 is a low-level communication software layer. PMv2 supports multiple pro-
tocol and has several PM devices according to the (physical level) protocol.

PM Context An endpoint of PM object consisting of send and receive buffers.

PM Device PM context is created from a PM device which encapsulate device
dependent part. There are several PM devices as described below.

PM/Composite PM/Composite is a pseudo device, which means it has no
actual network device but it can have several PM contexts.

PM/Ethernet PM Ethernet device.

PM/Myrinet PM Myrinet device.

PM/Shmem PM shared memory device for intra-host communication.

SCore A cluster system software package.

47

SCore-D A cluster operating system managing various cluster resources, hosts, CPUs
(cores), PM networks. SCore-D allocates those resources to a user parallel job ac-
cording to its request and schedules parallel jobs.

scrun A program or user command to submit SCore jobs. FEP is a process of scrun.

48

Appendix B

Man Pages

smake(1)

NAME

smake – make utility to maintain groups of programs for SCore

SYNOPSIS

smake [make options

DESCRIPTION

The smake utility is a wrapper for the make command. It determines the machine’s
operating system type and executes make with specific SCore build options.

The options available for smake:

make options command options are passed, as is, to make

scorecc(1)

NAME

scorecc – C compiler for SCore program.

SYNOPSIS

scorecc [option | filename]...

49

DESCRIPTION

The scorecc command compiles source files in the C language, and links object files for
SCore. Almost all the options of the standard C compiler may be specified as the scorecc
arguments.

OPTIONS

-script script The default setting in the script file is used.

-compiler compiler

–compiler compiler Specify the backend C compiler.

-compiler-path compiler command

–compiler-path compiler command Specify the backend compiler path. This option
will override the compiler used for the compiling environment.

-scash

–scash Use scash library and include file.

-scash smp

–scash smp Use scash library supporting SMP cluster.

-c Compile only, no linking.

-nostatic

–nostatic Specify dynamic linking. scorecc links static by default. This option disable
checkpointing facilities.

-nockpt

–nocheckpoint Disables all checkpointing facilities. Also disable all system call overrides
for checkpoint.

-show Verbose mode. Display the commands and arguments invoked by the scorecc

script

ENVIRONMENT

SCORE BUILD COMPILERS If the -compiler option is not specified, the value of this en-
vironment variable is searched. The value of SCORE BUILD COMPILERS is space or
comma separated list of script =compiler or compiler. If script matches with the
-script option value or the defasult script, then the compiler value is used. If there
is no matched entry with script and only the entry of compiler can be found, the
compiler value is used. Otherwise system default is used.

50

SCORE COMPILERS If the -compiler-path option is not specified, the value of this variable
is searched for. The value of SCORE BUILD COMPILERS is space or comma separated
list of script =path or path. If script matches the -script option value or default
script, the cpath is used. If there is no matched entry with path and only the entry
of path can be found, this path value is used. Otherwise system default is used.

scrun(1)

NAME

scrun — SCore front-end process to run a user parallel program on a cluster

SYNOPSIS

scrun [-SCoreOptions] program [program options]

DESCRIPTION

scrun is a front-end program for SCore-D that manages a variety of cluster resources.
User programs running on a cluster must be invoked via the scrun program.

Firstly, scrun invokes the user program, specified by the program argument, on the
host where scrun was executed. This is done in such a way to get the required resource
information. Then, scrun tries to login to SCore-D. After login, scrun becomes a front-
end process in order to control job status of the user program running on the cluster
and output stadrad output and standard error message. When the user program finishes,
scrun also terminates.

Valid arguments to scrun could be SCore options. The options are various resource
specifications to SCore-D and/or options for language runtime systems on which user
programs rely. In this manual page, only SCore-D options are described. The language
system options must be consulted where those systems are installed.

If the first argument of scrun does not begin with the minus (-) character, or the third
argument when SCore options are specified, then the next argument must be the filename
of the program to be executed on the cluster. The specified executable file is copied and
then invoked by SCore-D on all allocated nodes in the cluster. Arguments following the
program are passed to the invocation of the executable file on all nodes.

The executable file must have read permission so that scrun can read the file and copy
it to compute hosts. The file must also be an executable file on the host where scrun is
invoked, so that scrun can execute the file to get resource information.

The scrun program can also submit a parallel job to compute hosts which have a
different OS and/or CPU from the host where scrun is invoked. In this case, at least
two executable files must be present, one for the scrun local invocation, and another for
cluster execution. To allow for this situation, the executable files must be compiled with
the SCore smake(1) commands (not make or gmake). In this case, the executable file
must be a symbolic link to the .wrapper script which will be automatically created by the

51

smake command. It is the users responsibility to have consistent heterogeneous executable
files compiled from the same source code.

GENERAL FORMAT OF SCore OPTIONS

The first character must be a minus (-), followed by keyword and value pairs, each pair is
separated by a comma (,). The keyword is a predefined SCore literal and its associated
value are separated by the equal (=) character. Here is an example:� �

$ scrun -nodes=2,cpulimit=4 a.out

� �
In this case, two SCore options are specified, one is the “nodes“ option and another

the “cpulimit“ option. The nodes option has the value of “2“, and cpulimit has the value
of “4“.

If the same keywords are listed in the SCore options, then the leftmost one is taken. The
value of the SCORE OPTIONS environment variable is taken as the default option setting.

SINGLE USER MODE AND MULTIPLE USER MODE

The SCore-D operating system is designed to run multiple jobs at a time in a time-sharing
manner. However, it has a single user mode to allow users to use the cluster exclusively.
This is useful when users want to evaluate programs. When scrun is invoked in a SCOUT

environment and no scored options are specified, then scrun firstly invokes SCore-D on
the cluster within the SCOUT environment, and then the user program will be executed on
the invoked SCore-D. When the user program terminates SCore-D also terminates.

If group option is sepcified, then scrun creates the SCOUT environment on the hosts
specified by the value of the group option and then user program is executed in the single
user mode. When the file option is specified and a set of hostnames is listed in the file
specified as the option value, then the user program is executed in the single user mode
in that host group. The checkpoint options is enabled when the group or file options is
specified.

If SCore-D is already running on a cluster, then the user must specify, with the SCore-
D option, the SCore-D server host which is accepting user logins or the hosts where
SCore-D is running. User can also specify host group name by the SCore-D option to
specify the set of hosts where SCore-D is running on. Precisely, the value of the scored

option is in the format which the scorehosts command can accept.

RESOURCE SPECIFICATION

SCore-D manages a variety of cluster resources, such as node, networks, disks, etc. In
this section, those resource specification options are described.

nodes[=hosts][xprocs] [.[bintype][. cpugen [.speed]]]
The hosts is the number of hosts or nodes in a cluster required to run a user program.
The procs is the number of processes to be invoked on a SMP cluster. If the procs is
not present, and allocated hosts are in a SMP cluster, then the number of allocated
hosts might be the number of hosts divided by the number of processors in the SMP

52

host. If the procs number is specified, then that number of processes on each SMP
host is invoked if possible. If the number of requested nodes is less than the total
number of nodes in the partition, then SCore-D allocates nodes such that load of
each node is balanced. The bintype option specifies the binary type to be run on a
heterogeneous cluster. The name of the binary type comes from the smake command
and the .wrapper script. Currently, the binary type name as followed:

Proessor Type OS Binary Type

i386 TurboLinux i386-turbo-linux

i386 SuSE Linux i386-suse-linux

alpha SuSE Linux alpha-suse-linux

i386 Redhat Linux 7.x i386-redhat7-linux2 4

i386 Redhat Linux 8.x i386-redhat8-linux2 4

ia64 Redhat Linux 7.x ia64-redhat7-linux2 4

alpha Redhat Linux alpha-redhat-linux

i386 NetBSD i386-unknown-netbsd

Sparc SunOS4 sparc-sun-sunos4

Sparc SunOS5 sparc-sun-sunos5

On a heterogeneous cluster, users can specify CPU types by the cpugen option.
Possible values for the cpugen option are specified in scorehosts.db, which is a
database containing all cluster information. The speed option values are also spec-
ified in scorehosts.db.

network=network name[+network name]...
Users can specify the network (PM device) by the network option to allocate the
network for user program execution on a cluster. Valid network name (s) are speci-
fied in scorehosts.db. Users can also specify multiple networks for a user program
parallel execution.

priority=number

Scheduling priority can be specified with the priority option. The smaller the
value, the higher the priority. A job having a higher value will be scheduled more
often.

monitor[=monitor type]
Attach a real-time user program execution monitor. Valid types for monitor type

are: load, comm, memory, disk, usr0, usr1, all and ALL. The load value attaches
a CPU activity monitor, comm attaches a communication activity monitor. memory

and disk option values to attach memory and disk usage monitors, respectively. The
usage value is scaled to limit values, if specified. Otherwise they are scaled to the
values of available free space when SCore-D is invoked. The usr0 and usr1 options
attach monitors displaying the values set by user program (See sc set monitor()).
If the monitor option has no value, then load and communication monitors are
attached. If user specifies all, then CPU, communication, memory usage and disk
usage monitors are attached. If user specifies ALL, then all six monitors are attached.
User must have an accesible X window server and the DISPLAY environment variable
must be set correctly.

53

debug[=number]
The MPC++ or MPICH-SCore runtime system is programmed to detect exception
signals such as SIGSEGV. When an exection signal is raised, the runtime system asks
SCore-D to attach a gdb (GNU debugger) process to debug the user program. If the
debug option is specified, and the user program is running in time sharing priority,
then SCore-D creates a gdb process. Otherwise, the user program will be killed. The
number options limits the number of debugger processes attached at the same time.
The default value is 4 and the maximun number is limited to 10. If the DISPLAY

environment variable is set, then SCore-D creates an xterm process in which gdb

process runs. If the DISPLAY environment varibale is absent or having no value, but
score.gdb file exists in the current directory and the file is readable from cluster
hosts, then the gdb process will read the file and execute the gdb commands written
in the file. If score.gdb file is not accesible, then the gdb process will execute only
the backtrace gdb command.

stat[istics][=stat type]
When a user program terminates, scored outputs resource usage information to stan-
dard error or the scrun process. The default is to only output summary information
unless stat type is specified. Valid types for stat type are: all and detail. If either
of these types are used then individual node information will be output.

scored=scored-server [multi-user mode only]
Specify SCore-D server hostname to login SCore-D which is already running with
multi-user mode. If this option is not specified, then SCore-D is invoked by scrun

in single-user mode.

group=hostgroup [single-user mode only]
Firstly a SCOUT environment is created according to the specified hostgroup , then
user program is invoked in the SCOUT environment. Checkpoint is enabled with
this options in the single-user mode.

restart

Compute host sometimes crashes and running jobs are killed unexpectedly. If the
restart option is set, user’s program execution will be restarted from the beginning
when scored is restarted with the -restart option. Note that this restart option is
valid while the scrun process is alive. When the user kills the scrun process, restart
never happens.

checkpoint[=interval]
This option is similar to the restart option, but user’s program execution contexts are
saved to local disk at a specified time interval. If the interval value is immediately
followed by a character, ’m’, ’h’ or ’d’, then the unit of the interval is minute, hour
or day, respectively. When scored is restarted, program execution continues from
where the more recent checkpoint was taken. This restart will only take place while
the scrun process is alive. If you want to checkpoint in the single user mode, you
must invoke scrun with the group option out of the SCOUT environment.

cpulimit=limit

Specify the CPU time limit (in seconds) of a user program to run.

54

memorylimit=limit

This option specifies memory limit (in MB). This option is effective when SCore-D is
running in multi-user mode.

disklimit=limit

This option specifies disk limit (in MB). This option is effective when SCore-D is
running in multi-user mode.

wait

If the wait option is specified and login to SCore-D because of specified resource is
temporarily unavailable, then login is postponed until specified resource is available.
This option is only effective for SCore-D running in multi-user mode.

message[=mode]
Control output messages produced by the SCore system at runtime. Valid modes
for mode are: concise and quiet. The default is to output all messages. concise

suppresses normal messages so only warning and error messages are output. quiet

supresses all messages except for error messages.

resource

When the resource option is specified, scrun tries to investigate SCore options and
resource requests of user program(s), and then the SCore options, resource requests,
and pathname(s) of user program(s) will be displayed and then exit. User program(s)
will not run on a cluster.

JOB CONTROL and SIGNALS

The job status of user program execution on a cluster is linked with the job status of
scrun. Users can suspend, resume, or kill parallel jobs running on a cluster similar to
a normal UNIX command by typing ∧Z, fg command, and ∧C. Further, if the output
of scrun is stopped by ∧S, eventually cluster execution can be suspended until scrun
output is allowed by ∧Q. Typing “ˆ\” or sending SIGQUIT triggers checkpointing, instead
of creating a core file, and waiting for its restart when SCore-D unexpectedly terminates
(system down).

Some UNIX signals delivered to the scrun process will be forwarded and broadcasted
to the processes running in a cluster. The forwarded signals are SIGINT, SIGABRT, SIGTERM,
SIGURG, SIGWINCH, SIGUSR1, and SIGUSR2.

INPUT/OUTPUT REDIRECTION

Similar to the Unix shell, the standard inputs and/or outputs of a parallel process can be
redirected to files. When a user program specified in the scrun arguments is followed by
the “:=“ symbol and a filename, then the standard inputs of the parallel process derived
from the user program are the file. If the symbol is “=:,” then the standard outputs are
the file. If the symbol is “=::,” then the outputs are appended to the file.

Note that the open files are local and located in compute hosts. Further, if the filename
is a basename, there is no “/” in its name, then the files are created in an SCore-D working

55

directory located on compute hosts, and they are removed when the parallel job is termi-
nated. If the filename is an abosolute pathname, then the files are created on specified
pathname. No relative pathname is allowed.

On an SMP cluster and the output redirection pathname is absolute, only the first
process in a compute host will be redirected to the specified file, and the other processes
will output to the /dev/null.

PARALLEL JOB

Similar to the Unix shell, scrun not only supports simple commands, but also pipelined
commands and sequenced commands. Pipelined commands are separated with the “==“
symbol, and sequenced commands with the “::“ symbol. Parallel processes in a paral-
lel job are allocated in the same partition (set of hosts) in a cluster. Pipelined parallel
processes having the same node number are connected with the Unix pipe, just like the
pipelined commands under the Unix shell, and they are scheduled at the same time. Par-
allel processes are executed in sequence when they are separated with sequential symbol(s)
(“::“).

Sequential programs, such as normal Unix commands can run on a cluster via the
system comand, just like the way of the Unix system function. This system command
can be used for house keeping of a cluster.

Combining the scatter command, user parallel program and gather command in
serial, users can move necessary data file back and forth between users’ workstation and
compute hosts.

ENVIRONMENTS

DISPLAY Specify X Window server.

SCORE OPTIONS Default scrun options can be set in this environment variable. Its value
must be a list of pairs of a option name and an associated value separated by an
equal (=) symbol. Each pair is separated by a comma (,). No space (blank) character
must be included. The minus (-) symbol should NOT be placed at the begenning
of the environment value.

sc barrier(2)

NAME

sc barrier — barrier synchronization

SYNOPSIS

#include <sc.h>
int sc_barrier(void);

56

DESCRIPTION

sc barrier() must be called on all nodes to get a successful return. When the pro-
gram running on all nodes reaches the point where sc barrier(), then all sc barrier()

function calls returns.

RETURN VALUES

sc barrier() returns 0 if it succeeds or returns the following error number:

ERRORS

EINTR Job is restarted from a checkpoint.

sc checkpoint(2)

NAME

sc checkpoint — trigger checkpointing

SYNOPSIS

#include <sc.h>
int sc_checkpoint(void);

DESCRIPTION

sc checkpoint() triggers checkpointing.

RETURN VALUES

sc checkpoint() returns 0 if the triggered checkpoint is succeeded or the program is
restartde from the checkpointing.

ERRORS

sc exit(2)

NAME

sc exit — terminate the parallel job with an exit value

57

SYNOPSIS

#include <sc.h>
int sc_exit(int)

DESCRIPTION

The sc exit() function terminates the parallel process with an exit value.

RETURN VALUES

Although the sc exit() function type is int, it does not return.

sc flush(2)

NAME

sc flush — flush standard message and error message streams

SYNOPSIS

#include <sc.h>
int sc_flush(void);

DESCRIPTION

sc flush() waits for the output of standard and error message streams on all node.
Since all the message streams from compute nodes are merged and output from the scrun
process, messages from different nodes is deterministic. When the sc flush() function
returns, then all messages previously output is guaranteed to be output.

RETURN VALUES

sc flush() returns 0 if it succeeds or returns the following error number:

ERRORS

EINTR Job is restarted from a checkpoint during the flush.

sc getpid(2)

NAME

sc getpid — get a parallel process ID

58

SYNOPSIS

#include <sc.h>
int sc_getpid(int *scpid)

DESCRIPTION

The sc getpid() function returns the parallel process ID.

RETURN VALUES

sc getpid() always returns 0

ERRORS

(none)

sc inspectme(2)

NAME

sc inspectme — attach a debugger

SYNOPSIS

#include <sc.h>
int sc_inspectme(char *display, int signal)

DESCRIPTION

The sc inspectme() function attaches a debugger (GDB or DDT) to the calling process, and
the parallel process, including the calling process, becomes a zombie. The zombie parallel
process will be destroyed when all debuggers are detached, or when the front-end process is
killed. The debugger attachment takes place only when the debug SCore runtime option is
specified, and the number of simultaneous debugger attachments is limited by the option.

When the display variable is set to NULL, then the value of DISPLAY environment is used.
The signal variable is an arbitrary number to be displayed in the debugger attachment
message.

RETURN VALUES

Although the sc inspectme() function return type is int, it doesn’t return a value.

59

sc signal bcast(2)

NAME

sc signal bcast — broadcast a signal to all processes

SYNOPSIS

#include <signal.h>
#include <sc.h>
int sc_signal_bcast(int signal);

DESCRIPTION

sc signal bcast() broadcasts signal to all processes in a user parallel process. Since
SCore-D controls user processes using SIGSTOP, SIGCONT and SIGKILL, broadcasting one
of these signals using sc signal bcast() is prohibited.

RETURN VALUES

sc signal bcast() returns 0 on success or the following error:

ERRORS

EINVAL signal is a negative number, or signal is SIGSTOP, SIGCONT or SIGKILL.

sc sleep(2)

NAME

sc sleep — sleep for a specified number of seconds

SYNOPSIS

#include <sc.h>
int sc_sleep(int sec);

DESCRIPTION

FUNCsc sleep sleeps for sec seconds.

RETURN VALUES

sc sleep() returns 0 on success or returns the following error number:

60

ERRORS

EINVAL sec is a negative number

EINTR Job is restarted from a checkpoint during the sleep.

sc yield(2)

NAME

sc yield — yield processors

SYNOPSIS

#include <sc.h>
int sc_yield(void);

DESCRIPTION

sc yield() voluntarily relinquishes the processors. This results in the other runnable jobs
are scheduled.

RETURN VALUES

sc yield() returns 0 on success.

pmAddNode(3)

NAME

pmAddNode — add a node into PM/Composite context

SYNOPSIS

int pmAddNode(pmContext *pmc, int node, pmContext *member pmc, int member node);

ARGUMENTS

pmContext * pmc IN pmContext object: must be a PM/Composite type
int node IN Node number in pmc

pmContext * member pmc IN Member context
int member node IN Node number in member context

61

DESCRIPTION

pmAddNode() sets member node in member pmc for node in pmc.

NOTICE

Only PM/Composite context supports this operation.

RETURN VALUES

PM SUCCESS Success
EINVAL Invalid node number
EBUSY member pmc is associated with another context

node is already associated with some context
ENOSYS Operation not supported (pmc is not a PM/Composite context)

pmAfterSelect(3)

NAME

pmAfterSelect — call after returning from select(2)

SYNOPSIS

int pmAfterSelect(pmContext *pmc);

ARGUMENTS

pmContext * pmc IN pmContext object

DESCRIPTION

pmAfterSelect() must be called after returning from select() regardless of the return
value of select().

RETURN VALUES

PM SUCCESS Success

pmAttachContext(3)

NAME

pmAttachContext — create a context

62

SYNOPSIS

int pmAttachContext(char *type, int fd, pmContext **pmcp);

ARGUMENTS

char * type IN Type of context
int fd IN File descriptor of context

pmContext ** pmcp OUT pmContext object

DESCRIPTION

pmAttachContext() creates a pmContext object specified by type and fd , and attaches
it to the calling process.

RETURN VALUES

PM SUCCESS Success
ENODEV No such device
EINVAL Invalid file descriptor

pmBeforeSelect(3)

NAME

pmBeforeSelect — call before select(2)

SYNOPSIS

int pmBeforeSelect(pmContext *pmc);

ARGUMENTS

pmContext * pmc IN pmContext object

DESCRIPTION

pmBeforeSelect() must be called before calling select().

NOTICE

After calling pmBeforeSelect(), all messages in the receive queue must be extracted by
pmReceive().

RETURN VALUES

PM SUCCESS Success

63

pmErrorString(3)

NAME

pmErrorString — convert an error number to an error string

SYNOPSIS

char *pmErrorString(int error);

ARGUMENTS

int error IN Error number

DESCRIPTION

pmErrorString() converts an error number to an error string.

RETURN VALUES

The error string

pmExtractNode(3)

NAME

pmExtractNode - extract a member context and member node number

SYNOPSIS

int pmExtractNode(pmContext *pmc, int node, pmContext **member pmcp, int *mem-
ber nodep);

ARGUMENTS

pmContext * pmc IN pmContext object: must be a PM COMPOSITE type
int node IN Node number in pmc

pmContext ** member pmcp OUT Member context
int * member nodep OUT Node in member context

DESCRIPTION

pmExtractNode() extracts a member context and a member node number of node in pmc.

NOTICE

Only PM/Composite contexts supports this operation.

64

RETURN VALUES

PM SUCCESS Success
EINVAL Invalid node number

No context is associated with node
ENOSYS Operation not supported (pmc is not a PM/Composite context)

pmGetContextConfig(3)

NAME

pmGetContextConfig - get configuration of a context

SYNOPSIS

int pmGetContextConfig(pmContext *pmc, pmContextConfig *configp);

ARGUMENTS

pmContext * pmc IN pmContext object
pmContextConfig * configp OUT Context configuration

DESCRIPTION

pmGetContextConfig() returns the configuration of a context.

NOTICE

The caller must not free or alter the returned type name string.

RETURN VALUES

PM SUCCESS Success

pmGetFd(3)

NAME

pmGetFd - extract file descriptors associated with a context

SYNOPSIS

int pmGetFd(pmContext *pmc, int *fd, int *nfdp);

65

ARGUMENTS

pmContext * pmc IN pmContext object: must be a PM COMPOSITE type
int * fd OUT File descriptors of context
int * nfdp IN Number of entries in fd array

OUT Number of file descriptors

DESCRIPTION

pmGetFd() extracts file descriptors associated with context pmc for select() or poll().
It always sets the number of file descriptors to *nfdp and returns ENOSPC if the number of
array entries is too small.

RETURN VALUES

PM SUCCESS Success
ENOSPC Number of array entries is too small
EINVAL Number of array entries is less than zero
ENOMEM Not enough memory

pmGetMessageQueueStatus(3)

NAME

pmGetMessageQueueStatus - get the message queue status

SYNOPSIS

int pmGetMessageQueueStatus(pmContext *pmc, pmMessageQueueStatus *statp);

ARGUMENTS

pmContext * pmc IN pmContext object
pmMessageQueueStatus * statp OUT Message Queue status

DESCRIPTION

pmGetMessageQueueStatus() returns a pmMessageQueueStatus structure which contains
the number of received messages, sending messages and outstanding remote read opera-
tions present or not in the queue.

RETURN VALUES

PM SUCCESS Success

66

pmGetMtu(3)

NAME

pmGetMtu - get an MTU value of a context

SYNOPSIS

int pmGetMtu(pmContext *pmc, int node, size t *mtup);

ARGUMENTS

pmContext * pmc IN pmContext object: must be a PM/Composite type
int node IN Node number

size t * mtup OUT MTU

DESCRIPTION

pmGetMtu() returns an MTU value of context pmc to communicate with node.

RETURN VALUES

PM SUCCESS Success
EINVAL Invalid node number

pmGetMulticastBuffer(3)

NAME

pmGetMulticastBuffer - allocate a buffer for multicasting to nodes

SYNOPSIS

int pmGetMulticastBuffer(pmContext *pmc, int *dest, int ndest, caddr t *bufp, size t
len);

ARGUMENTS

pmContext * pmc IN pmContext object
int * dest IN Destination node numbers

int ndest IN Number of destination numbers
caddr t * bufp OUT Buffer address

size t len IN Buffer length

67

DESCRIPTION

pmGetMulticastBuffer() allocates a message buffer of len bytes for multicasting to nodes
described in dest. If pmc is of type PM/Composite and a buffer is allocated, the context
is locked until pmSend() is called.

NOTICE

Returned buffer addresses can be cast to any type.
Minimum value of len is 1.

RETURN VALUES

PM SUCCESS Success
ENOBUFS No buffer is available
EINVAL Invalid destination node number

Invalid length (len < minimum length or len > MTU)
EBUSY Context is already locked

ENOSYS Operation not supported

pmGetSelf(3)

NAME

pmGetSelf - get the node number of itself in a context

SYNOPSIS

int pmGetSelf(pmContext *pmc, int *selfp);

ARGUMENTS

pmContext * pmc IN pmContext object
int * selfp OUT Node number of itself

DESCRIPTION

pmGetSelf() returns a node number of itself in context pmc.

RETURN VALUES

PM SUCCESS Success
EINVAL Node number is not set

68

pmGetSendBuffer(3)

NAME

pmGetSendBuffer - allocate a buffer to send a message

SYNOPSIS

int pmGetSendBuffer(pmContext *pmc, int dest, caddr t *bufp, size t len);

ARGUMENTS

pmContext * pmc IN pmContext object
int dest IN Destination node number

caddr t * bufp OUT Buffer address
size t len IN Buffer length

DESCRIPTION

pmGetSendBuffer() allocates a buffer to send a len bytes of a message, if available. If pmc

is of type PM/Composite and a buffer is allocated, the context is locked until pmSend()
is called.

NOTICE

Returned buffer addresses can be cast to any type.
Minimum value of len is 1.

RETURN VALUES

PM SUCCESS Success
ENOBUFS No buffer is available
EINVAL Invalid destination node number

Invalid length (len < minimum length or len > MTU)
EBUSY Context is already locked

pmIsReadDone(3)

NAME

pmIsReadDone - determine if all previous pmRead()’s are done

SYNOPSIS

int pmIsReadDone(pmContext *pmc);

69

ARGUMENTS

pmContext * pmc IN pmContext object

DESCRIPTION

pmIsReadDone() determines if all previous pmRead()’s are done.

RETURN VALUES

PM SUCCESS All remote reads are done
EBUSY Some remote reads are not yet done

EIO Error occured in some remote reads
ENOSYS Operation not supported

pmIsSendDone(3)

NAME

pmIsSendDone - determine if all previous sent messages have been received

SYNOPSIS

int pmIsSendDone(pmContext *pmc);

ARGUMENTS

pmContext * pmc IN pmContext object

DESCRIPTION

pmIsSendDone() determines if all previous sent messages have been received by destination
nodes.

NOTICE

pmIsSendDone() does not guarantee that the messages have been extracted by receiver
processes.

RETURN VALUES

PM SUCCESS All messages have been sent
EBUSY Some messages have not yet been sent

EIO Error occured while sending messages

70

pmIsWriteDone(3)

NAME

pmIsWriteDone - determine if all previous pmWrite()’s are done

SYNOPSIS

int pmIsWriteDone(pmContext *pmc);

ARGUMENTS

pmContext * pmc IN pmContext object

DESCRIPTION

pmIsWriteDone() determines if all previous pmWrite()’s are done, and all regions to be
transferred can be altered.

NOTICE

pmIsWriteDone() does not guarantee that the sent data has been written into the remote
nodes.

RETURN VALUES

PM SUCCESS All remote writes are done
EBUSY Some remote writes are not yet done

EIO Error occured in some remote writes
ENOSYS Operation not supported

pmMLock(3)

NAME

pmMLock - pin down a specified region and return a locked address handle

SYNOPSIS

int pmMLock(pmContext *pmc, int rmt node, caddr t addr, size t len, pmAddrHandle
*hndlp);

71

ARGUMENTS

pmContext * pmc IN pmContext object
int rmt node IN Remote node number

caddr t addr IN Start address of region to be locked
size t len IN Length of region

pmAddrHandle * hndlp OUT Locked address handle

DESCRIPTION

pmMLock() pins down a specified region and returns a locked address handle.

NOTICE

For a composite context rmt node can be specified as PM NODE ANY to pin-down a region
for all remote nodes.
Alignment of addr and len is system dependent.
Minimum value of len is system dependent.

RETURN VALUES

PM SUCCESS Success
EINVAL Invalid remote node number

Invalid length
ENOSPC No enough resources to lock a region
ENOSYS Operation not supported

pmMUnlock(3)

NAME

pmMUnlock - release a specified pinned-down region

SYNOPSIS

int pmMUnlock(pmContext *pmc, int rmt node, caddr t addr, size t len);

ARGUMENTS

pmContext * pmc IN pmContext object
int rmt node IN Remote node number

caddr t addr IN Start address of region to be locked
size t len IN Length of region

DESCRIPTION

pmMUnlock() releases a specified pinned-down region. The actual release of the region
may be delayed.

72

NOTICE

For a composite context rmt node can be specified as PM NODE ANY for all remote nodes.
Alignment of addr and len is system dependent.
Minimum value of len is system dependent.

RETURN VALUES

PM SUCCESS Success
EINVAL Invalid remote node number

Invalid length
ENOENT Region was not locked by pmMLock()

ENOSYS Operation not supported

pmRead(3)

NAME

pmRead - copy data from a remote region to a local region

SYNOPSIS

int pmRead(pmContext *pmc, int rmt node, pmAddrHandle rmt hndl, pmAddrHandle
local hndl, size t len);

ARGUMENTS

pmContext * pmc IN pmContext object
int rmt node IN Remote node number

pmAddrHandle rmt hndl IN Remote address handle
pmAddrHandle local hndl IN Local address handle

size t len IN Bytes to read

DESCRIPTION

pmRead() copies data from a remote region to a local region.
Both regions must be locked by pmMLock().
Local and remote address handles are (locked address handle + offset).

NOTICE

Alignment of rmt hndl, local hndl and len is system dependent.
Minimum value of len is system dependent.

73

RETURN VALUES

PM SUCCESS Success
EINVAL Invalid remote node number

Invalid length
ENOBUFS No enough resources to read
ENOSYS Operation not supported

pmReceive(3)

NAME

pmReceive - return an address and length of a message

SYNOPSIS

int pmReceive(pmContext *pmc, caddr t *bufp, size t *lenp);

ARGUMENTS

pmContext * pmc IN pmContext object
caddr t * bufp OUT Address of message

size t * lenp OUT Length of message

DESCRIPTION

pmReceive() polls for message arrival and returns an address and a length of the message
if available. If pmc is of type PM/COMPOSITE and a message is received, the context is
locked until pmReleaseReceiveBuffer() is called.

NOTICE

Returned buffer address can be cast to any type.

RETURN VALUES

PM SUCCESS Message is received
ENOBUFS No message is received

EIO Data link level error (CRC error for Myrinet)
EPIPE Network reset occurred for Myrinet
EBUSY Context is already locked

74

pmReleaseReceiveBuffer(3)

NAME

pmReleaseReceiveBuffer - release a message buffer

SYNOPSIS

int pmReleaseReceiveBuffer(pmContext *pmc);

ARGUMENTS

pmContext * pmc IN pmContext object

DESCRIPTION

pmReleaseReceiveBuffer() releases a message buffer previously received by pmReceive().
If pmc is of type PM/Composite then the context is unlocked.

RETURN VALUES

PM SUCCESS Success
EIO Called before a message is received

pmRemoveNode(3)

NAME

pmRemoveNode - remove a node

SYNOPSIS

int pmRemoveNode(pmContext *pmc, int node);

ARGUMENTS

pmContext * pmc IN pmContext object: must be a PM/Composite type
int node IN Node number in pmc

DESCRIPTION

pmRemoveNode() removes a member node from node in pmc.

NOTICE

Only PM/Composite contexts supports this operation.

75

RETURN VALUES

PM SUCCESS Success
EINVAL Invalid node number

No context is associated with node
EIO Internal error

ENOSYS Operation not supported

pmSend(3)

NAME

pmSend - send a previously allocated message

SYNOPSIS

int pmSend(pmContext *pmc);

ARGUMENTS

pmContext * pmc IN pmContext object

DESCRIPTION

pmSend() sends a message previously allocated by pmGetSendBuffer() or pmGetMulticastBuffer().
If pmc is of type PM/Composite then the context is unlocked.

RETURN VALUES

PM SUCCESS Success
EIO Called with no buffer allocated

pmTruncateBuffer(3)

NAME

pmTruncateBuffer - truncate a send buffer length

SYNOPSIS

int pmTruncateBuffer(pmContext *pmc, size t len);

ARGUMENTS

pmContext * pmc IN pmContext object
size t len IN New buffer length

76

DESCRIPTION

pmTruncateBuffer() truncates a send buffer length previously allocated by pmGetSendBuffer()

or pmGetMulticastBuffer().

NOTICE

The buffer length cannot be expanded.
Minimum value of len is 1.

RETURN VALUES

PM SUCCESS Success
EINVAL Invalid length

EIO Called with no buffer allocated

pmWrite(3)

NAME

pmWrite - copy data from a local region

SYNOPSIS

int pmWrite(pmContext *pmc, int rmt node, pmAddrHandle rmt hndl, pmAddrHandle
local hndl, size t len);

ARGUMENTS

pmContext * pmc IN pmContext object
int rmt node IN Remote node number

pmAddrHandle rmt hndl IN Remote address handle
pmAddrHandle local hndl IN Local address handle

size t len IN Bytes to write

DESCRIPTION

pmWrite() copies data from a local region to a remote node.
Both regions must be locked by pmMLock().
Local and remote address handles are (locked address handle + offset).

NOTICE

Alignment of rmt hndl, local hndl and len is system dependent.
Minimum value of len is system dependent.

77

RETURN VALUES

PM SUCCESS Success
EINVAL Invalid remote node number

Invalid length
ENOBUFS No enough resources to write
ENOSYS Operation not supported

sc create temporary file(3)

NAME

sc create temporary file — create a temporary file

SYNOPSIS

#include <sc.h>
int sc_create_temporary_file(char *filename, int *fd);

DESCRIPTION

sc create temporary file() creates a temporary file in the SCore-D directory. The life
time of the created file is the same as the one of the parallel job in which this system call
is invoked. Thus, the created file will be deleted when the parallel job terminates.

RETURN VALUES

sc create temporary file() always returns 0 if it succeeds. Otherwise it returns the
same error number as the Unix open() system call.

sc open temporary file(3)

NAME

sc open temporary file — open a temporary file

SYNOPSIS

#include <sc.h>
int sc_open_temporary_file(char *filename, int *fd);

DESCRIPTION

sc open temporary file() opens a temporary file in the SCore-D directory.

78

RETURN VALUES

sc open temporary file() always returns 0 if it succeeds. Otherwise it returns the same
error number as the Unix open() system call.

sc set monitor(3)

NAME

sc set monitor — setting user load monitor

SYNOPSIS

#include <sc.h>
void sc_set_monitor(int which, unsigned char value);

DESCRIPTION

The sc set monitor() function set the value which can be viewed via SCore-D load
monitor. Currently two monitors which user program can control. If the value of the
which variable is zero, then value is set for 0th monitor. Otherwise the value is set for first
monitor.

RETURN VALUES

None.

sc unlink temporary file(3)

NAME

sc unlink temporary file — unlink a temporary file

SYNOPSIS

#include <sc.h>
int sc_unlink_temporary_file(char *filename);

DESCRIPTION

sc unlink temporary file() unlinks a temporary file in the SCore-D directory.

79

RETURN VALUES

sc unlink temporary file() always returns 0 if it succeeds. Otherwise it returns the
same error number as the Unix unlink() system call.

score become busy(3)

NAME

score become busy — tells SCore-D that the process becomes busy

SYNOPSIS

#include <score.h>
void score_become_busy(void);

DESCRIPTION

score become busy() lets SCore-D know the running state of a user process. If a user
process becomes busy, this means that the program has just exited from a busy-wait loop
waiting for incoming PM messages, and score become idle() must be called.

score become idle(3)

NAME

score become idle — tells SCore-D that the process becomes idle

SYNOPSIS

#include <score.h>
void score_become_idle(void);

DESCRIPTION

score become idle() lets SCore-D know the running state of a user process. If a user
process becomes idle, this means that the program is actually waiting for incoming PM
messages in a busy-wait loop, then it is preferable to call score become idle(). By
reporting the status of a user process correctly, SCore-D can detect the global state of a
user parallel process, and SCore-D can try to de-schedule it if the process is in global idle,
or try to kill it if the process is assumed to be globally terminated, possibly because of
deadlock.

80

score get opt(3)

NAME

score get opt — get an SCore option

SYNOPSIS

#include <score_options.h>
char *score_get_opt(char *keyword)

DESCRIPTION

score get opt() attempts to get the SCore option from the scrun command-line argu-
ments specified by the user.

RETURN VALUES

score get opt() returns a character string associated with the vale of the keyword argu-
ment. score get opt() returns NULL if the keyword is not found. It returns a pointer to
a null character if the option is specified but has no associated value.

NOTICE

The SCore options table is initialized in score initialize(). Calling score get opt()

before calling score initialize() results in unpredictable results.

score initialize(3)

NAME

score initialize — initialize a user process

SYNOPSIS

#include <score.h>
void score_initialize(int argc, char **argv);

int score_num_pmnet;
pmContext **score_pmnet;
int score_num_host;
int score_self_host;
int score_num_proc;
int score_self_proc;
int score_num_node;
int score_self_node;

81

DESCRIPTION

score initialize() initializes the parallel process execution environment for a user pro-
cess. score pmnet is initialized to contain a set of pmContexts. The number of pmContexts
is set in the score num pmnet variable. The user parallel program can communicate with
other nodes using the pmContext(s) stored in score pmnet. The device type of the pmCon-
text is always PM/Composite, so that PM communication operation is mutually exclusive
on a SMP host.

The number of hosts and host number (ID) in the parallel process are set in score num host

and score self host, respectively. The number of processes in the host where the user
program is running and its identification are set in score num proc and score self proc,
respectively. The number of nodes and node identification of the parallel process are set
in score num node and score self node, respectively.

NOTICE

Output to standard output is NOT allowed prior to calling score initialize().

gather(6)

NAME

gather — Gather data from the cluster

SYNOPSIS

gather [-node node number] [-file filename]

DESCRIPTION

gather must be invoked by the scrun) command. It gathers standard input of each gather
process running on the cluster nodes and forwards them to the standard output of scrun.

The options available for gather:

-node node number Only the standard input specified for node node number is for-
warded, otherwise all the standard inputs are gathered sequentially starting from
node 0 and output to scrun

-file filename The corresponding file on the cluster hosts is gathered. If filename does
not start with “/“, then it is assumed that the file is located in a temporary directory
under the /var/scored directory. If this option is not specified, then the standard
inputs of each process are gathered

82

scatter(6)

NAME

scatter - Broadcast standard input of scrun

SYNOPSIS

scatter [-node node number] [-file filename]

DESCRIPTION

scatter must be invoked by the scrun command. It broadcasts standard input of the
scrun process to all scatter processes running on a cluster.

The options available for scatter:

-node node number scrun standard input is only copied to the node specified by
node number . If this option is not specified then standard input of scrun is broadcast
to all scatter processes running on a cluster

-file filename The broadcasted data is written to the file filename . If filename does
not start with “/“, then a temporary output file is created under the /var/scored
directory, and when a parallel job finishes, this file is automatically deleted. If the
-file option is not specified, then the broadcasted data is output to the standard
output of each scatter process on the cluster. Note that when scatter is executed
with the -file option on an SMP cluster, then only one output file is created on
each host.

The scatter command is designed with the view to be used with the SCore-D parallel
job management facility (see also scrun man page). scatter copies a file out of a cluster
into cluster hosts in a scalable way. Or, users can run normal sequential programs or Unix
commands run on a cluster in parallel using the system SCore-D command.

Here are some examples:

$ scrun -nodes=8 scatter == a.out < my.dat

In this example, the standard input file my.dat is fed as a standard input for all
processes of a.out running on a cluster.

$ scrun -nodes=16x1 scatter -file cluster.dat :: a.out < local.dat

In this case, the local file local.dat is copied to the file cluster.dat in a temporary
directory under /var/scored on all 16 hosts, and then the user program a.out is executed
on a cluster so that the a.out program can read the broadcasted file.

SEE ALSO

scrun(1), system(6), gather(6)

83

system(6)

NAME

system - Execute a sequential program on the cluster in parallel

SYNOPSIS

system [-host] seqprog [arg ...]

DESCRIPTION

system must be invoked by the scrun command. It executes the sequential program,
seqprog , on the cluster by calling execvp(3) on each node. Arguments to seqprog should
be included after the program.

The options available for system:

-host Only one process on a host executes the sequential program. Other processes
terminate immediately

The system command is designed to execute the sequential command in parallel on
a cluster. To distinguish from other processes, environment variables, SCORE SELF PROC,
SCORE SELF HOST, SCORE SELF NODE, SCORE NUM PROC, SCORE NUM HOST, and SCORE NUM NODE

are set the appropriate value.
Upon execution, the current working directory is set to a temporary directory created

each time a parallel job is run. The temporary directory is located somewhere in the
/var/scored directory on each compute host. By doing this, the temporary file created
by the scatter program can be read by the sequential program on each host. There
are library functions, sc create temporary file() and sc open temporary file() to
create or access the temporary file without regarding to the exact pathname.

score compiler list(8)

NAME

score compiler list - display SCore backend compiler list

SYNOPSIS

score compiler list -script script [-check] [-path] [-noalias] [-default] score compiler list -env
environ [-check] [-path] [-noalias] score compiler list -all [-check] [-path] [-noalias]

84

DESCRIPTION

score compiler list prints backend compiler information. If you specify -script script op-
tion, script ’s backend compilers are printed. If you specify -env environ , specific scripts
for environ environment backend compiler information are printed. If you specifies -all,
all scripts backend compiler are printed.

For example, score compiler list -script mpicc output as follows:

gnu

pgi

This meens you can specify gnu and pgi compiler on mpicc. If you specify -noalias option,
score compiler list don’t print aliases. If you specify -default option, score compiler list
print only default compiler. If you specify -path option, score compiler list print compiler
path as follows:

gnu:gcc

pgi:pgcc

If you specify -check option, score compiler list test the backend compilers commands
are existed, and print result.

EXAMPLES

% score_compiler_list -script mpicc

% score_compiler_list -all -check

85

Index

.wrapper, 6, 53
/dev/null, 56
/var/scored, 82–84
, 33

a.out, 9
addr, 33
allocate locked buffer, 33, 34

blocking receive, 27
buffer, 35, 36

C-Area, 7, 29
Command

.wrapper, 53
a.out, 9
cpp, 16
DDT, 59
gather, 56, 82
GDB, 59
gdb, 22
make, 49
MPICH-SCore, 22
scatter, 9, 10, 16, 18, 26, 27, 56, 83, 84
score compiler list, 19, 84
scorecc, 18, 49, 50
scorehosts, 52
scrun, 6–11, 18, 20, 22, 24, 26, 30, 31,

44, 45, 48, 51, 52, 54–56, 81–83
smake, 6, 49, 51–53
system, 56, 83, 84

Command Option
-file, 83
checkpoint, 54
compiler, 19
cpugen, 53
cpulimit, 54
debug, 22, 54
disklimit, 55

group, 54
memorylimit, 55
message, 55
monitor, 30, 53
network, 53
nodes, 52
noidle, 30
priority, 53
resource, 55
restart, 54
scored, 52, 54
speed, 53
stat[istics], 54
wait, 55

COMPOSITE, 74
Composite, 4, 5, 12, 15, 31, 33, 47, 61, 62,

64, 65, 67–69, 75, 76, 82
Compute Host, 47
cpp, 16

DDT, 22, 59
DISPLAY, 21, 22, 53, 54, 56, 59

EBUSY, 12, 14–16, 23, 28, 34, 62, 68–71, 74
EINVAL, 13, 62, 65–69, 72–74, 76–78
EIO, 70, 71, 74–77
ENOBUFS, 12, 14, 16, 23, 68, 69, 74, 78
ENOENT, 73
ENOMEM, 66
ENOSPC, 66, 72
ENOSYS, 3, 31, 62, 65, 68, 70–74, 76, 78
Environment Variable

DISPLAY, 21, 22, 53, 54, 56, 59
PM DEBUG, 19, 22
SCORE BUILD COMPILERS, 50, 51
SCORE COMPILERS, 51
SCORE NUM HOST, 84
SCORE NUM NODE, 84
SCORE NUM PROC, 84

86

SCORE OPTIONS, 52, 56
SCORE SELF HOST, 84
SCORE SELF NODE, 84
SCORE SELF PROC, 84

EPIPE, 74
ERRNO

EBUSY, 12, 14–16, 23, 28, 34, 62, 68–
71, 74

EINVAL, 13, 62, 65–69, 72–74, 76–78
EIO, 70, 71, 74–77
ENOBUFS, 12, 14, 16, 23, 68, 69, 74,

78
ENOENT, 73
ENOMEM, 66
ENOSPC, 66, 72
ENOSYS, 3, 31, 62, 65, 68, 70–74, 76,

78
EPIPE, 74
PM SUCCESS, 3, 12, 14, 28, 34, 62, 63,

65–78
Ethernet, 2, 5, 17, 32, 47
exchange handle, 33
exec, 6, 7
exit, 18

fdarray, 26
FEP, 47
File

.wrapper, 6
/dev/null, 56
/var/scored, 82–84
score.gdb, 54
scorehosts.db, 53

filename, 45
fork, 6, 7
Function

main, 21
open, 78, 79
pmAddNode, 4, 61, 62
pmAfterSelect, 4, 26, 62
pmAssociateNodes, 4
pmAttachContext, 4, 62, 63
pmBeforeSelect, 4, 26, 27, 63
pmBindChannel, 4
pmCheckpoint, 4
pmCloseAttachFd, 4

pmCloseContext, 4
pmCloseDevice, 4
pmControlReceive, 4
pmControlSend, 4
pmCreateAttachFd, 4
pmDebug, 4
pmDetachContext, 4
pmDumpContext, 4
pmErrorString, 4, 64
pmExtractNode, 4, 64
pmGetContextConfig, 4, 31, 65
pmGetDeviceConfig, 4
pmGetFd, 4, 26, 65, 66
pmGetMessageQueueStatus, 4, 29, 66
pmGetMmapInfo, 4
pmGetMtu, 4, 15, 17, 67
pmGetMulticastBuffer, 67, 68, 76, 77
pmGetNodeList, 4
pmGetOptionBit, 4
pmGetSelf, 4, 68
pmGetSendBuffer, 4, 13–17, 23, 34, 69,

76, 77
pmGetTypeList, 4
pmIsReachable, 4
pmIsReadDone, 4, 34, 36, 69, 70
pmIsSendDone, 4, 28, 70
pmIsSendStable, 4
pmIsWriteDone, 4, 34, 36, 71
pmMigrateSys, 4
pmMigrateUser, 4
pmMLock, 4, 33, 71–73, 77
pmMUnblock, 33
pmMUnlock, 4, 33, 72
pmOpenContext, 4
pmOpenDevice, 4
pmRead, 4, 33–36, 70, 73
pmReceive, 4, 12, 13, 15, 16, 23, 29, 63,

74, 75
pmReleaseReceiveBuffer, 4, 12, 13, 15,

16, 23, 74, 75
pmRemoveNode, 4, 75
pmResetContext, 4
pmRestartSys, 4
pmRestartUser, 4
pmRestoreContext, 4
pmSaveContext, 4

87

pmSend, 4, 13–17, 23, 29, 34, 68, 69, 76
pmTruncateBuffer, 4, 16, 19, 23, 76, 77
pmUnbindChannel, 4
pmWrite, 4, 33–35, 71, 77
poll, 66
rdma read, 35, 41
rdma read head, 42
rdma read tail, 43
rdma write head, 39
rdma write tail, 40
sc barrier, 8, 28, 56, 57
sc checkpoint, 8, 25, 26, 57
sc create temporary file, 8, 45, 78, 84
sc exit, 8, 17, 18, 20, 57, 58
sc flush, 8, 45, 58
sc getpid, 8, 58, 59
sc insepctme, 22
sc inspectme, 8, 21, 22, 59
sc open temporary file, 8, 45, 78, 79, 84
sc set monitor, 8, 30, 53, 79
sc signal bcast, 8, 45, 46, 60
sc sleep, 8, 46, 60
sc terminate, 17
sc unlink temporary file, 8, 45, 79, 80
sc yield, 8, 46, 61
score become busy, 8, 16, 29, 30, 80
score become idle, 8, 16, 29, 30, 80
score ckpt enter uncheckpointable, 25
score ckpt leave uncheckpointable, 25
score get opt, 8, 45, 81
score initialize, 6–8, 11, 12, 23, 81, 82
select, 62, 63, 66
time, 25
unlink, 80

gather, 56, 82
GDB, 59
gdb, 22, 54
get pm option bits, 32
get send buffer, 16
get send message, 18
getenv, 45
gettimeofday, 25
gmake, 51

Host, 47

idle flag, 8, 29
is read done, 36
is write done, 35, 36

keyword, 45

len, 33
Linux Command

DDT, 22
gdb, 22, 54
gmake, 51
make, 6, 49, 51
ps, 30
rdist, 9
top, 30
xterm, 22

Linux Function
exec, 6, 7
exit, 18
fork, 6, 7
getenv, 45
gettimeofday, 25
MPIBarrier, 28
poll, 26
posix memalign, 33
read, 17
sched yield, 46
select, 26, 27
sleep, 46

loc Handel, 33
loc handle, 33

Macro
PM MAX NODE, 15
PM MIN MTU, 15, 17
PM NODE ANY, 33, 72, 73
PM OPT REMOTE READ, 32
PM OPT REMOTE WRITE, 32
PM RMA MTU, 15
PM SUCCESS, 15

main, 21, 34, 37
make, 6, 49, 51
MPIBarrier, 28
MPICH-SCore, 22
mtu, 17
Myrinet, 2, 5, 15, 47

88

naive recv message, 13
naive send message, 14
network set, 12
nfdp, 26
Node, 47
nonblocking receive, 27
Note

PMv2 Message Passing, 23
PMv2 Protocol, 5
SCore, 2

open, 78, 79

parallel job, 3, 6–9, 47
parallel process, 8, 9, 17
parallel processes, 8
passing handle, 35
PM

, 33
COMPOSITE, 74
Composite, 4, 5, 12, 15, 31, 33, 47, 61,

62, 64, 65, 67–69, 75, 76, 82
Ethernet, 2, 5, 17, 32, 47
Myrinet, 2, 5, 15, 47
Shmem, 4, 5, 17, 32, 47

PM Context, 47
PM DEBUG, 19, 22
PM MAX NODE, 15
PM MIN MTU, 15, 17
PM NODE ANY, 33, 72, 73
PM OPT REMOTE READ, 32
PM OPT REMOTE WRITE, 32
PM RMA MTU, 15
PM SUCCESS, 3, 12, 14, 15, 28, 34, 62, 63,

65–78
pmAddNode, 4, 61, 62
pmAddrHandle, 34
pmAddrHanlde, 33
pmAfterSelect, 4, 26, 62
pmAssociateNodes, 4
pmAttachContext, 4, 62, 63
pmBeforeSelect, 4, 26, 27, 63
pmBindChannel, 4
pmCheckpoint, 4
pmCloseAttachFd, 4
pmCloseContext, 4

pmCloseDevice, 4
pmContextConfig, 31
pmControlReceive, 4
pmControlSend, 4
pmCreateAttachFd, 4
pmDebug, 4
pmDetachContext, 4
pmDumpContext, 4
pmErrorString, 4, 64
pmExtractNode, 4, 64
pmGetContextConfig, 4, 31, 65
pmGetDeviceConfig, 4
pmGetFd, 4, 26, 65, 66
pmGetMessageQueueStatus, 4, 29, 66
pmGetMmapInfo, 4
pmGetMtu, 4, 15, 17, 67
pmGetMulticastBuffer, 67, 68, 76, 77
pmGetNodeList, 4
pmGetOptionBit, 4
pmGetSelf, 4, 68
pmGetSendBuffer, 4, 13–17, 23, 34, 69, 76,

77
pmGetTypeList, 4
pmIsReachable, 4
pmIsReadDone, 4, 34, 36, 69, 70
pmIsSendDone, 4, 28, 70
pmIsSendStable, 4
pmIsWriteDone, 4, 34, 36, 71
pmMessageQueueStatus, 29, 66
pmMigrateSys, 4
pmMigrateUser, 4
pmMLock, 4, 33, 71–73, 77
pmMUnblock, 33
pmMUnlock, 4, 33, 72
pmOpenContext, 4
pmOpenDevice, 4
pmRead, 4, 33–36, 70, 73
pmReceive, 4, 12, 13, 15, 16, 23, 29, 63, 74,

75
pmReleaseReceiveBuffer, 4, 12, 13, 15, 16,

23, 74, 75
pmRemoveNode, 4, 75
pmResetContext, 4
pmRestartSys, 4
pmRestartUser, 4
pmRestoreContext, 4

89

pmSaveContext, 4
pmSend, 4, 13–17, 23, 29, 34, 68, 69, 76
pmTruncateBuffer, 4, 16, 19, 23, 76, 77
pmUnbindChannel, 4
pmWrite, 4, 33–35, 71, 77
poll, 26, 66
posix memalign, 33
ps, 30
pseudo device, 4, 47

rdist, 9
rdma read, 35, 41
rdma read head, 36, 42
rdma read tail, 36, 43
rdma write, 35, 38
rdma write head, 35, 39
rdma write tail, 35, 40
read, 17
read file and pass next, 16, 19
recv func, 16
rmt handle, 33
rmt node, 33

Sample Code
allocate locked buffer, 33, 34
blocking receive, 27
exchange handle, 33
get pm option bits, 32
get send buffer, 16
get send message, 18
is read done, 36
is write done, 35, 36
main, 34, 37
naive recv message, 13
naive send message, 14
nonblocking receive, 27
passing handle, 35
rdma read head, 36
rdma read tail, 36
rdma write, 35, 38
rdma write head, 35
rdma write tail, 35
read file and pass next, 16, 19
send local handle, 33, 35
spinwait receive, 16, 17, 20
write file and pass next, 20

sc barrier, 8, 28, 56, 57
sc checkpoint, 8, 25, 26, 57
sc create temporary file, 8, 45, 78, 84
sc exit, 8, 17, 18, 20, 57, 58
sc flush, 8, 45, 58
sc getpid, 8, 58, 59
sc insepctme, 22
sc inspectme, 8, 21, 22, 59
sc open temporary file, 8, 45, 78, 79, 84
sc set monitor, 8, 30, 53, 79
sc signal bcast, 8, 45, 46, 60
sc sleep, 8, 46, 60
sc terminate, 17
sc unlink temporary file, 8, 45, 79, 80
sc yield, 8, 46, 61
scatter, 9, 10, 16, 18, 26, 27, 56, 83, 84
sched yield, 46
SCore, 47
score.gdb, 54
score become busy, 8, 16, 29, 30, 80
score become idle, 8, 16, 29, 30, 80
SCORE BUILD COMPILERS, 50, 51
score ckpt enter uncheckpointable, 25
score ckpt leave uncheckpointable, 25
score compiler list, 19, 84
SCORE COMPILERS, 51
score get opt, 8, 45, 81
score initialize, 6–8, 11, 12, 23, 81, 82
SCORE NUM HOST, 84
SCORE NUM NODE, 84
score num pmnet, 12
SCORE NUM PROC, 84
SCORE OPTIONS, 52, 56
score pmnet, 12, 15, 23
SCORE SELF HOST, 84
SCORE SELF NODE, 84
SCORE SELF PROC, 84
scorecc, 18, 49, 50
scorehosts, 52
scorehosts.db, 53
scrun, 6–11, 18, 20, 22, 24, 26, 30, 31, 44,

45, 48, 51, 52, 54–56, 81–83
sec, 46
select, 26, 27, 62, 63, 66
send local handle, 33, 35
Server Host, 47

90

Shmem, 4, 5, 17, 32, 47
SIGABRT, 24, 55
SIGBUS, 22
SIGCONT, 24, 46, 60
SIGFPE, 22
SIGHUP, 22, 24
SIGILL, 22
SIGINT, 24, 55
SIGKILL, 24, 60
Signal

SIGABRT, 24, 55
SIGBUS, 22
SIGCONT, 24, 46, 60
SIGFPE, 22
SIGHUP, 22, 24
SIGILL, 22
SIGINT, 24, 55
SIGKILL, 24, 60
SIGQUIT, 24, 25, 55
SIGSEGV, 22, 54
SIGSTOP, 24, 46, 60
SIGSYS, 22
SIGTERM, 24, 55
SIGTSTP, 24
SIGURG, 24, 55
SIGUSR1, 24, 55
SIGUSR2, 24, 55
SIGWINCH, 24, 55

signal, 45
SIGQUIT, 24, 25, 55
SIGSEGV, 22, 54
SIGSTOP, 24, 46, 60
SIGSYS, 22
SIGTERM, 24, 55
SIGTSTP, 24
SIGURG, 24, 55
SIGUSR1, 24, 55
SIGUSR2, 24, 55
SIGWINCH, 24, 55
sleep, 46
smake, 6, 49, 51–53
spinwait receive, 16, 17, 20
Struct

pmAddrHandle, 34
pmAddrHanlde, 33
pmContextConfig, 31

pmMessageQueueStatus, 29, 66
system, 56, 83, 84

time, 25
top, 30

unlink, 80
URL

DDT, 21
Mellanox, 3
MPICH, 1
Myricom, 3
NAS Parallel Benchmark, 6
Omni OpenMP, 2
PC Cluster Consortium, 1
TopSpin, 3
YAMPI, 1

User Host, 47

Variable
addr, 33
buffer, 35, 36
fdarray, 26
filename, 45
idle flag, 8, 29
keyword, 45
len, 33
loc Handel, 33
loc handle, 33
mtu, 17
nfdp, 26
recv func, 16
rmt handle, 33
rmt node, 33
score num pmnet, 12
score pmnet, 12, 15, 23
sec, 46
signal, 45

write file and pass next, 20

xterm, 22

91

