
Exploring XMP programming

model applied to Seismic

Imaging application
Laurence BEAUDE

Total at a glance:
 96 000 employees in more than 130 countries
 Upstream operations (oil and gas exploration,

development and production, Liquefied Natural
Gas)

 Downstream operations (refining, marketing
and the trading and shipping of crude oil and
petroleum products)

 Base chemicals (petrochemicals and fertilizers)
and specialty chemicals

• Renewable energies (especially solar and
biomass)

Introduction

24/10/2014 Laurence BEAUDE 2

● Introduction

I. Seismic imaging and RTM principle
 Seismic imaging
 Reverse Time Migration
 Scheme

II. XMP programming model
 How to parallelize a code using XMP?
 Results
 Some feedbacks

● Conclusion

3Laurence BEAUDE

Contents

24/10/2014

4Laurence BEAUDE

Seismic imaging and RTM
principle

● Introduction

I. Seismic imaging and RTM principle
 Seismic imaging
 Reverse Time Migration
 Scheme

II. XMP programming model
 How to parallelize a code using XMP?
 Results
 Some feedbacks

● Conclusion

24/10/2014

Seismic imaging and RTM
principle

Seismic imaging:

One algorithm: the Reverse Time Migration.

5Laurence BEAUDE

Data Velocity model (inverse problem) Algorithms + HPC

+ +

24/10/2014

Seismic acquisition:
Contrast in terms of seismic waves velocity and

density causes reflections of seismic waves.

6Laurence BEAUDE

Seismic imaging and RTM
principle

24/10/2014

RTM: Consists in solving the wave equation.
[1/c2 ∂2 /∂t2 - ∆] u(x,t) = 0

1. Propagation of the source wave-field (t=0,T)
2. Retro-propagation of the receivers wave-field (t=T,0)

Reversibility of the wave equation!
3. Imaging condition: cross-correlation

7Laurence BEAUDE

Seismic imaging and RTM
principle

24/10/2014

Infinite physical Finite computational
 domain domain
 (underground) (3D rectangular box)

Damping effect (artificial absorbing layer near the
walls to avoid artificial reflections)

Two different wave equations are
discretized depending on the domain

8Laurence BEAUDE

VS

DAMPING

INNER

Seismic imaging and RTM
principle

24/10/2014

RTM code consists in a Finite Difference
discretization, explicit time scheme

Stencil:
- two points in time
- up to eight points in each direction in space

9Laurence BEAUDE

VS

Seismic imaging and RTM
principle

24/10/2014

10Laurence BEAUDE

Seismic imaging and RTM
principle

Grid decomposition:

24/10/2014

11Laurence BEAUDE

Seismic imaging and RTM
principle

Communications:

24/10/2014

Finite Difference scheme:
 Explicit time scheme.
 Forward or Backward: same discretization but

reverse time loop (t=0,T or t=T,0).
 The domains (inner and damping) are

determined at the beginning of each shot, no
« if » statement in the Finite Difference
subroutines.

For XMP:
 Regular 3D grid-decomposition
 Communications only between two neighbors

12Laurence BEAUDE

Seismic imaging and RTM
principle

24/10/2014

13Laurence BEAUDE

XMP

● Introduction

I. Seismic imaging and RTM principle
 Seismic imaging
 Reverse Time Migration
 Scheme

II. XMP programming model
 How to parallelize a code using XMP?
 Results
 Some feedbacks

● Conclusion

24/10/2014

14Laurence BEAUDE

XMP advantages

XMP:

 Easy to transform a sequential program into a
parallel program.

 Optimized to the architecture, and no
necessity to rewrite the code to change the
parallelism language (MPI,...)

24/10/2014

15Laurence BEAUDE

Two XMP versions

In my case: XMP FORTRAN

I already had a parallel code so I am doing two
different versions using XMP:

● I came back to a sequential version and all the
parallelism is implemented with XMP (grid
decomposition, loops, communication)

● I kept the parallel code and only the
communications are performed with reflect.

24/10/2014

16Laurence BEAUDE

Two XMP versions

In my case: XMP FORTRAN

I already had a parallel code so I am doing two
different versions using XMP:

● I came back to a sequential version and all the
parallelism is implemented with XMP (grid
decomposition, loops, communication)

● I kept the parallel code and only the
communications are performed with reflect.

24/10/2014

17Laurence BEAUDE

XMP at a glance
How to parallelize a code using XMP?
Initialization of XMP:
!$xmp nodes node(*,*,*) ! defined by environment variables
!$xmp template temp_3d(:,:,:)
!$xmp distribute temp_3d(gblock(*),gblock(*),gblock(*)) onto node

Declaration of the vectors distributed over the grid:
real, dimension (:, :, :), allocatable :: u0
!$xmp align (i,j,k) with temp_3d(i,j,k) :: u0
!$xmp shadow u0(SHADOWX, SHADOWY, SHADOWZ) ! macros
allocate (u0 (xcompmin_g : xcompmax_g, ...))

XMP computational directives:
!$xmp array on temp_3d(xcompmin_g:xcompmax_g, ...)
!$xmp loop(i,j,k) on temp_3d(i,j,k)
!$xmp task on temp_3d(ix:jx,iy:jy,iz:jz)

XMP communication directives:
!$xmp reflect (u0)
!$xmp bcast (xmax,ymax,zmax) on node

24/10/2014

18Laurence BEAUDE

XMP programming model

Fortran 95 base language:

Some intrinsic modules do not exist.

Mixed FORTRAN and C programming
(ISO_C_BINDING and BIND are not available).

Allocatable array cannot be passed to
subroutines. Necessity to declare them as
global variables, and copy of the subroutines
which were called with different allocatable
arrays.

24/10/2014

19Laurence BEAUDE

XMP programming model
Initialization of XMP:

!$xmp nodes node(*,*,*) ! defined by environment variables
!$xmp template temp_3d(:,:,:)
!$xmp distribute temp_3d(gblock(*),gblock(*),gblock(*)) onto node

After the determination of the domain size:

!$xmp template_fix(gblock(Mx), gblock(My), gblock(Mz)) &
 temp_3d(xcompmin_g:xcompmax_g,ycompmin_g:ycompmax_g,...)

24/10/2014

MPI domain description.
Definition of global and local variables to describe the

grid decomposition : local view programming.

20Laurence BEAUDE

XMP programming model

24/10/2014

21Laurence BEAUDE

XMP programming model
To distribute a vector, in the MPI version, the vector
is allocated with the local sizes; whereas with XMP
the vector is aligned with XMP construct and
allocated with the global size.

MPI:
real, dimension(:, :, :), allocatable, save :: u0
allocate (u0 (xmemmin_l : xmaxmem_l, ...))

XMP:
real, dimension (:, :, :), allocatable, save :: u0
!$xmp align (i,j,k) with temp_3d(i,j,k) :: u0
!$xmp shadow u0(SHADOWX, SHADOWY, SHADOWZ)
allocate (u0 (xcompmin_g : xcompmax_g, ...))

24/10/2014

22Laurence BEAUDE

XMP programming model
 XMP computational directives:

!$xmp array on temp_3d(xmin_g:xmax_g, ymin_g:ymax_g, ...)
u0 (xmin_g:xmax_g, ymin_g:ymax_g, …) = 1.0

!$xmp loop(i,j,k) on temp_3d(i,j,k) !really easy for inner/damping
do i = xmin_g, xmax_g
 do j = ymin_g, ymax_g
 do z = zmin_g, zmax_g
 ….
 end do
 end do
end do

!$xmp task on node(1,1,1)
 open(ius, FILE=my_file)
 ...
!$xmp end task

24/10/2014

23Laurence BEAUDE

XMP communications
MPI Communications.

More local variables are defined and MPI_Isend.

24/10/2014

24Laurence BEAUDE

XMP communications
XMP Communications.

Shadow: specifies the width of the shadow area
used to communicate the neighbor elements.

Reflect: updates the shadow elements.

!$xmp reflect (v_comm) width (SHADOWX,0,0)
!$xmp reflect (v_comm) width (0,SHADOWY,0)
!$xmp reflect (v_comm) width (0,0,SHADOWZ)

24/10/2014

25Laurence BEAUDE

Summary

A few and precise directives to parallelize a code.
But it can be complicated in some case to do
specific operation with XMP.

For example, how to initialize the shadow areas
at the global lower and upper bounds without
periodic reflect?

It is not possible to use an aligned array without
an XMP directive. Even when local variables are
used, it is mandatory to precise a directive like
“!$xmp task on”.

24/10/2014

26Laurence BEAUDE

Two XMP versions

In my case: XMP FORTRAN

I already had a parallel code so I am doing two
different versions using XMP:

● I came back to a sequential version and all the
parallelism is implemented with XMP (grid
decomposition, loops, communication)

● I kept the parallel code and only the
communications are performed with reflect.

24/10/2014

27Laurence BEAUDE

XMP only in communications
The RTM code is written such that the kernel
is independent of the language of
parallelism.
During the communications: the vector is
copied into a sending buffer, then it is send
with MPI or CAF, and finally the buffer is
copied back into the vector.
The same is performed for this version with
XMP. One array is aligned, and is used when
one vector needs to update its shadow.

Copy || reflect || copy

24/10/2014

28Laurence BEAUDE

Results
My results: Comparison of MPI/XMP.

==> Synchronization in !$xmp task

24/10/2014

MPI
Fortran 2003
mpifrtpx

MPI
Fortran 95
xmpf90

XMP
Fortran 95
xmpf90

Inner 94s< . <257s 10s< . <263s 11s< . <258s

Damping 143s< . <357s 141s< . <368s 138s< . <355s

Kernel 315s< . <405s 325s< . <404s 325s< . <397s

Copy Send 3.0s< . <6.3s 3.3s< . <6.1s 8.5s< . <84s

Transfer 2.1s< . <100s 2.5s< . <89s 13s< . <14s

Copy Recv 1.4s< . <4.7s 1.7s< . <4.6s 9.4s< . <10s

Total 423s 422s 435s

29Laurence BEAUDE

Feedbacks
What Total has interests in:
● Is it difficult/long to implement a code using XMP?
I work on it since March (not full time, and I have waited
for some functions to be implemented).

● And compared to MPI?
XMP might be really easier to implement than MPI. Under
the condition that a more detailed documentation exists.

● Is XMP compatible with their programming standards?
Most of it, yes. But some distinctions: Fortran 95;
“Implicit none” not possible in some cases.

● What about the performances?
I don't have significant results yet.

● Relative tools (profiler, debugging tool,...)?

24/10/2014

30Laurence BEAUDE

Conclusion
● Introduction

I. Seismic imaging and RTM principle
 Seismic imaging
 Reverse Time Migration
 Scheme

II. XMP programming model
 How to parallelize a code using XMP?
 Results
 Some feedbacks

● Conclusion

24/10/2014

31Laurence BEAUDE

I like the idea of XMP. It can be really easy to use,
and I like the idea that it is optimized for the
machine and that it is not necessary to rewrite the
code (XMP changes, not my code).

I had (have) some difficulties to implement with
XMP because of the immaturity of XMP FORTRAN
(but not because of the philosophy of XMP). Also,
the documentation should be more detailed.

What about the performances of the RTM using XMP
Fortran? I cannot say, I don't have significant results
yet.

24/10/2014

Conclusion

32Laurence BEAUDE

● YML/XMP

● Co-Array Fortran.

24/10/2014

Future Work

Questions?

33Laurence BEAUDE24/10/2014

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

