Hybrid Computing for High-Throughput Bioinformatics

THE WORLD'S FIRST HYBRID-CORE COMPUTER.

Hybrid-core Computing

System Architecture

HC-1 Hardware

Memory Subsystem

5

- Optimized for 64-bit accesses; 80 GB/sec peak
- Automatically maintains coherency without impacting AE performance

HC-1 Hardware

- 2U enclosure:
 - Top half of 2U platform contains the coprocessor
 - Bottom half contains Intel motherboard

Using Personalities

- Personalities are reloadable instruction sets
- Compiler generates x86 and coprocessor instructions
- ANSI standard C/C++ & Fortran
- Executable runs on x86 nodes or Convey Hybrid-Core nodes

7

Personalities: Application Specific Architectures

Common Infrastructure

SEQUENCING AND ALIGNMENT SUITE

Sequencing and Alignment Suite

Smith-Waterman

- Nucleotides and Proteins
- Linear scoring now
- Soon table & affine

On the Roadmap

- Velvet
- BLAST (p, n, x, ...)
- Likely future applications (customer prioritized)
 - HMMER3
 - BWA
 - RAxML

Convey Smith-Waterman Personality Library

• Basic

- single function call
- handles all memory access, dispatch, cleanup

• Synchronous Configurable

- several functions
- myriad options to configure sequence searches
- pack multiple searches into search streams

• Asynchronous Configurable:

 in order to gain maximal performance

Smith-Waterman Personality

- 18 tiles of S-W on each AE
- Each tile
 - Systolic array unrolled in HW
 - 64 input cells / clock cycle
 - Clock @ 150Mhz
 - Generates 64 results / clock
- Join two tiles for input sequences length 128
- Database > 1 B characters
- Data is packed
 - 8 elements in each 64bit LOAD and STORE

Aggregate Performance

Smith-Waterman Performance

computer

Smith-Waterman Example

- Smith-Waterman Linear Search
 - Algorithm is "tiled" across each application engine
 - HC-1: 72 tiles
 - HC-1^{ex}: 168 tiles
- Kernel 99.5% efficient

HC-1

Extreme Performance

Billions of Cell Updates Per Second (GCUPS)

Exceptional Energy Efficiency

One rack of Convey HC-1 servers can replace as many as 10 racks of commodity servers.²

- Reduces floor space by 86%
- Reduces datacenter watts by 91%.
- Reduces 3-year TCO by 75%.
- Reduces 3-year TCO with power rebate 82%

One rack of Convey HC-1^{ex} servers achieves even greater energy efficiency. One rack can replace as many as 16 racks of commodity servers.³

- Reduces floor space by 94%
- Reduces datacenter watts by 93%.
- Reduces 3-year TCO by 90%.
- Reduces 3-year TCO with power rebate 94%

²"Convey Computer™ Corporation Ships to First Customer: University of California, San Diego," June 23, 2009.
³Based on University of California, San Diego analysis and internal Convey benchmarks

